1
|
Khuntia R, Maity D, Chandra Pan S. Catalytic Asymmetric De Novo Synthesis of Chiral Pyrroles Through Desymmetrizing Oxidative [3+2]-Cycloaddition and the Van Leusen Reaction. Chemistry 2025; 31:e202404511. [PMID: 39910876 DOI: 10.1002/chem.202404511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Indexed: 02/07/2025]
Abstract
Central chirality in heteroarene derivatives arising from unsymmetrically substituted heteroarene rings is an intriguing but underexplored topic. Herein, we reported the first catalytic enantioselective de novo construction of centrally chiral pyrroles through desymmetrizing oxidative [3+2]-cycloaddition by employing silver catalysis. This judicious desymmetrization can produce at least four continuous stereogenic centers without creating any additional stereocenter. Furthermore, to introduce a more diverse set of substituents, we developed the first catalytic asymmetric Van Leusen reaction with α-substituted TosMIC for the synthesis of centrally chiral pyrroles. A wide range of polycyclic 2-substituted, 3,4-fused pyrroles were obtained in high yields and with good to high enantioselectivities. This report includes the elaboration of methanobenzo[f]isoindole to synthetically challenging building block chiral isoindole compounds, which are synthesized enantioselectively for the first time.
Collapse
Affiliation(s)
- Rupkumar Khuntia
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Diptendu Maity
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Subhas Chandra Pan
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
2
|
Xu X, Zhong L, Feng H, Van der Eycken EV. Application of Metal-Free Dearomatization Reaction as a Sustainable Strategy to Direct Access Complex Cyclic Compounds. CHEM REC 2023; 23:e202300101. [PMID: 37132130 DOI: 10.1002/tcr.202300101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 04/17/2023] [Indexed: 05/04/2023]
Abstract
The highly efficient construction of complicated heterocyclic frameworks in an atom- and step-economic manner is still one of the cores of synthetic chemistry. Dearomatization reactions show the unique advantage for the construction of functionalized heterocycles and have attracted widespread attention over the past two decades. The metal-free approach has proved to be a green and sustainable paradigm for the synthesis of spirocyclic, polycyclic and heterocyclic scaffolds, which are widely present in natural products and bioactive molecules. In this review, the advances in the recent six years (2017-2023) in metal-free dearomatization reactions are highlighted. Emphasis is placed on developments in the field of organo-catalyzed dearomatization reactions, oxidative dearomatization reactions, Brønsted acid- or base-promoted dearomatization reactions, photoredox-catalyzed dearomatization reactions, and electrochemical oxidation dearomatization reactions.
Collapse
Affiliation(s)
- Xianjun Xu
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
| | - Ling Zhong
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai, 201620, China
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Erik V Van der Eycken
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, 3001, Belgium
- Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow, 117198, Russia
| |
Collapse
|
3
|
Xu G, Li L, Xu B, Fang Z, Duan J, Guo K. Copper-catalyzed three-component annulation toward pyrroles via the cleavage of two C-C bonds in 1,3-dicarbonyls. Chem Commun (Camb) 2023; 59:10636-10639. [PMID: 37580978 DOI: 10.1039/d3cc02681g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2023]
Abstract
The first copper-catalyzed three-component annulation of α,β-unsaturated ketoximes, 1,3-dicarbonyls and paraformaldehyde has been documented. This novel strategy achieved the two C-C bond cleavage of 1,3-dicarbonyl compounds directly as a single-carbon synthon and provided a new and highly efficient method for the synthesis of 2,3-disubstituted pyrroles in moderate to good yields with broad functional group compatibility.
Collapse
Affiliation(s)
- Gaochen Xu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Luchao Li
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Binyan Xu
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Jindian Duan
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, 30 Puzhu Rd S, Nanjing, 211816, China.
| |
Collapse
|
4
|
Hu W, Huang J, Gao G, Guo W, Yin F, Sun Y, Huang J, Tao C, Tao L, Hu H. Palladium-Catalyzed Dearomatization of Indoles with Alkynes: Construction of Spirocyclohexaneindolenines. J Org Chem 2023. [PMID: 37470767 DOI: 10.1021/acs.joc.3c01041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
A palladium-catalyzed dearomatization of indoles with alkynes has been developed, providing an efficient route to access a variety of synthetically useful spirocyclohexaneindolenines in moderate to good yields. The current method features a simple catalytic system, operational simplicity, and good functional group compatibility, which will contribute substantially to the development of dearomatization to access spiro compounds. Besides, the ubiquitous existence of spiro molecules, including spirocyclohexaneindolenines, in drugs and biological active molecules suggests the potential application of this methodology in medicinal chemistry.
Collapse
Affiliation(s)
- Weiming Hu
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Jiali Huang
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Gang Gao
- Jiangsu Province Lianyungang Flood Control and Motorized Rescue Team, Lianyungang, Jiangsu 222000, China
| | - Wenting Guo
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Fujun Yin
- Jiangsu Institute of Marine Resources Development, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Yang Sun
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Jingjiao Huang
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Chuanzhou Tao
- Jiangsu Key Laboratory of Function Control Technology for Advanced Materials, School of Environmental and Chemical Engineering, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Li Tao
- Office of the Academic Affairs, Jiangsu Ocean University, Lianyungang, Jiangsu 222005, China
| | - Huayou Hu
- Jiangsu Key Laboratory for Chemistry of Low Dimensional Materials, School of Chemistry and Chemical Engineering, Huaiyin Normal University, Huaian, Jiangsu 223300, China
| |
Collapse
|
5
|
Hu F, Chu Y, Cao Z, Li Y, Hui XP. Enantioselective Synthesis of Functionalized Tetrahydropyridines through Iridium-Catalyzed Formal [5+1] Annulation. Org Lett 2022; 24:6945-6950. [PMID: 36129810 DOI: 10.1021/acs.orglett.2c02750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
An efficient iridium-catalyzed asymmetric formal [5+1] annulation by in situ generation of enamines as N-nucleophiles for the synthesis of tetrahydropyridine derivatives is disclosed. The methodology offers direct access to a wide variety of chiral tetrahydropyridine derivatives in moderate to good yields and excellent enantioselectivity.
Collapse
Affiliation(s)
- Fang Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yunpeng Chu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Zhengqiang Cao
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Yucheng Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Xin-Ping Hui
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| |
Collapse
|