1
|
Wang CC, Wang QL, Ren MR, Xue YJ, Wang ZH, Hou XH, Ma ZW, Xie YX, Chen YJ. [1+5] Cyclization of Indoline-Derived Azadienes with 1,3,5-Triazinanes: An Efficient Protocol for the Synthesis of Indoline-Spiro-Hexahydropyrimidines. Chemistry 2025:e202404277. [PMID: 39777962 DOI: 10.1002/chem.202404277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 01/01/2025] [Accepted: 01/07/2025] [Indexed: 01/11/2025]
Abstract
An unprecedented formal [1+5] cyclization of indoline-derived azadienes with 1,3,5-triazinanes has been realized, providing a facile access to biologically important indoline-spiro-hexahydropyrimidines with good to excellent yields (up to 99 % yield). Different from previous reports, this is the first study that indoline-derived azadienes could participate in cyclizations as one-atom synthons. This methodology is also distinguished by not involving any additive or catalyst, readily available starting materials, wide range of substrate applicability, operational simplicity and simultaneously reassembling two C-N and two C-C bonds in one-step reaction.
Collapse
Affiliation(s)
- Chuan-Chuan Wang
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou, 450044, Henan, China
| | - Qing-Long Wang
- College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengzhou, 450046, Henan, China
| | - Meng-Ru Ren
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China
| | - Yao-Jie Xue
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China
| | - Zhi-Hao Wang
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China
| | - Xue-Hui Hou
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou, 450044, Henan, China
| | - Zhi-Wei Ma
- Faculty of Science, Henan University of Animal Husbandry and Economy, No. 146 Yingcai Street, Zhengzhou, 450044, Henan, China
| | - Ying-Xin Xie
- College of Agronomy, Henan Agricultural University, No. 218 Ping'an Avenue, Zhengzhou, 450046, Henan, China
| | - Ya-Jing Chen
- School of Pharmaceutical Sciences, Zhengzhou University, No. 100 Science Avenue, Zhengzhou, 450001, Henan, China
| |
Collapse
|
2
|
Yu X, Zheng C, You SL. Chiral Brønsted Acid-Catalyzed Intramolecular Asymmetric Dearomatization Reaction of Indoles with Cyclobutanones via Cascade Friedel-Crafts/Semipinacol Rearrangement. J Am Chem Soc 2024; 146:25878-25887. [PMID: 39226394 DOI: 10.1021/jacs.4c09814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The highly efficient synthesis of chiral indolines fused with an azabicyclo[2.2.1]heptanone moiety is achieved by an asymmetric dearomatization reaction of indoles with cyclobutanones. A new chiral imidodiphosphorimidate (IDPi) catalyst is synthesized and exhibits extraordinary activity in promoting a cascade Friedel-Crafts/semipinacol rearrangement. Target molecules are prepared in good yields (up to 95%) with excellent enantioselectivity (up to 98% ee) with operational convenience. Combined experimental and computational studies provide detailed mechanistic insights into the energy landscape and origin of the stereochemical induction of the reaction.
Collapse
Affiliation(s)
- Xuan Yu
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
- Shanghai-Hong Kong Joint Laboratory of Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- New Cornerstone Science Laboratory, State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
3
|
Das S. Visible-Light-Induced Dearomative Annulation of Indoles toward Stereoselective Formation of Fused- and Spiro Indolines. ACS OMEGA 2024; 9:36023-36042. [PMID: 39220487 PMCID: PMC11360027 DOI: 10.1021/acsomega.4c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 09/04/2024]
Abstract
Dearomatization approaches are attractive for their abilities to transform simple, planar arenes into complex, three-dimensional architectures. In particular, visible-light driven dearomatization strategies are significant because of their mild, green, and sustainable nature, enabling the fabrication of new chemical bonds via an electron transfer or energy transfer process. Indole compounds, being potentially bioactive and readily accessible, can be employed efficiently as building blocks for constructing diverse annulated frameworks under photocatalysis. Highly stereoselective radical cascade reactions of appropriate indole systems can provide complex cyclic scaffolds bearing multiple stereocenters. In fact, the past few years have witnessed the renaissance of dearomative cycloadditions of indoles via visible-light-induced photocatalysis. The present review highlights recent advances (2019-mid 2024) in visible-light-driven dearomative annulation of indoles leading to formation of polycyclic indolines, including angularly fused and spiro indolines. Most of the reactions described in this review are simple, providing quick access to the desired products. Additionally, characteristic reaction mechanisms are offered to provide an understand of how indole scaffolds show distinctive reactivity under photocatalytic conditions.
Collapse
Affiliation(s)
- Suven Das
- Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati, North 24 Parganas, West Bengal 743165, India
| |
Collapse
|
4
|
Wan H, Xia S, Liu X, Jian Y, An Y, Wang Y. Synthesis of spirocyclic oxazole derivatives from 2-arylidene cycloalkanones and α-halohydroxamates. Org Biomol Chem 2022; 20:4293-4297. [PMID: 35575057 DOI: 10.1039/d2ob00701k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein we disclose a facile route to spirocyclic oxazole derivatives via [3 + 2] cycloaddition reactions between 2-arylidene cycloalkanones and azaoxyallyl cations that formed in situ from α-halohydroxamates in the presence of base. This methodology was shown to lead to an efficient formation of a series of functionalized spirocyclic oxazole derivatives in good to excellent yields.
Collapse
Affiliation(s)
- Huiyang Wan
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P.R. China.
| | - Shuangshuang Xia
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P.R. China.
| | - Xinghua Liu
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P.R. China.
| | - Yongchan Jian
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P.R. China.
| | - Yuanyuan An
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P.R. China.
| | - Yubin Wang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, P.R. China.
| |
Collapse
|
5
|
Yokoyama H, Dokai Y, Kimaru N, Saito K, Yamada T. Lewis Acid-catalyzed Decarboxylative Cyanation of Cyclic Enol Carbonates — Access to Multi-substituted β-Ketonitriles —. CHEM LETT 2022. [DOI: 10.1246/cl.220017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Haruki Yokoyama
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Yoichi Dokai
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Natsuki Kimaru
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Kodai Saito
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Tohru Yamada
- Department of Chemistry, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| |
Collapse
|
6
|
Leclair A, Wang Q, Zhu J. Two-Carbon Ring Expansion of Cyclobutanols to Cyclohexenones Enabled by Indole Radical Cation Intermediate: Development and Application to a Total Synthesis of Uleine. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05621] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Alexandre Leclair
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Qian Wang
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| | - Jieping Zhu
- Laboratory of Synthesis and Natural Products, Institute of Chemical Sciences and Engineering, Ecole Polytechnique Fédérale de Lausanne, EPFL-SB-ISIC-LSPN, BCH5304, CH-1015 Lausanne, Switzerland
| |
Collapse
|
7
|
Liu W, Zhang L, Liao X, Chen J, Huang Y. An NHC-Catalyzed [3+2] Cyclization of β-Disubstituted Enals with Benzoyl Cyanides. Chem Commun (Camb) 2022; 58:9742-9745. [DOI: 10.1039/d2cc04025e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The NHC-catalyzed asymmetric [3+2] cyclization of benzoyl cyanides to homoenolate generated in-situ from enals was reported. This methodology leads to the efficient construction of a series of chiral cyclic compounds...
Collapse
|