1
|
Zhang P, Liu Y, Li X, Siri G, Wang J, Li Z, Jian Y, Gao Z. Copper Catalyzed Three-Component Ullmann C-S Coupling in PEG for the Synthesis of 6-Aryl/alkylthio-purines. J Org Chem 2024; 89:2212-2222. [PMID: 38311847 DOI: 10.1021/acs.joc.3c02116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
To tackle the environmental unfriendly issue in existing synthesis strategies for 6-substitued thiopurine derivatives, such as poor step economy, frequent use of malodorous organic sulfur starting materials, toxic organic solvents, and equivalent dosage of base, we have developed a CuI-catalyzed base-free three-component Ullmann C-S coupling synthetic strategy, featured using inorganic salt Na2S as the sulfur source and nontoxic PEG-600 as the solvent. The newly developed strategy is particularly effective for the synthesis of 6-arylthiopurines. The high catalytic efficiency in PEG-600 can be rationalized by the high soluble ability of CuI catalyst, likely due to the presence of multiple oxygen coordination sites in PEG.
Collapse
Affiliation(s)
- Panpan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119, China
| | - Yunfang Liu
- South China Institute of Environmental Science, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Xulian Li
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119, China
| | - Geling Siri
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119, China
| | - Jieyuan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119, China
| | - Zhen Li
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119, China
| | - Yajun Jian
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119, China
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, MOE, Xi'an Key Laboratory of Organometallic Material Chemistry, School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710119, China
| |
Collapse
|
2
|
Okamura H, Trinh GH, Dong Z, Fan W, Nagatsugi F. Synthesis of 6-Alkynylated Purine-Containing DNA via On-Column Sonogashira Coupling and Investigation of Their Base-Pairing Properties. Molecules 2023; 28:molecules28041766. [PMID: 36838761 PMCID: PMC9965804 DOI: 10.3390/molecules28041766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Synthetic unnatural base pairs have been proven to be attractive tools for the development of DNA-based biotechnology. Our group has very recently reported on alkynylated purine-pyridazine pairs, which exhibit selective and stable base-pairing via hydrogen bond formation between pseudo-nucleobases in the major groove of duplex DNA. In this study, we attempted to develop an on-column synthesis methodology of oligodeoxynucleotides (ODNs) containing alkynylated purine derivatives to systematically explore the relationship between the structure and the corresponding base-pairing ability. Through Sonogashira coupling of the ethynyl pseudo-nucleobases and CPG-bound ODNs containing 6-iodopurine, we have demonstrated the synthesis of the ODNs containing three NPu derivatives (NPu1, NPu2, NPu3) as well as three OPu derivatives (OPu1, OPu2, OPu3). The base-pairing properties of each alkynylated purine derivative revealed that the structures of pseudo-nucleobases influence the base pair stability and selectivity. Notably, we found that OPu1 bearing 2-pyrimidinone exhibits higher stability to the complementary NPz than the original OPu, thereby demonstrating the potential of the on-column strategy for convenient screening of the alkynylated purine derivatives with superior pairing ability.
Collapse
Affiliation(s)
- Hidenori Okamura
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8577, Miyagi, Japan
- Correspondence: (H.O.); (F.N.)
| | - Giang Hoang Trinh
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8577, Miyagi, Japan
| | - Zhuoxin Dong
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8577, Miyagi, Japan
| | - Wenjue Fan
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8577, Miyagi, Japan
| | - Fumi Nagatsugi
- Institute of Multidisciplinary Research for Advanced Materials, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Miyagi, Japan
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8577, Miyagi, Japan
- Correspondence: (H.O.); (F.N.)
| |
Collapse
|
3
|
Yang QL, Liu Y, Luo YR, Li ZH, Jia HW, Fu YB, Qu GR, Guo HM. Rhodium(III)-Catalyzed Synthesis of Diverse Fluorescent Polycyclic Purinium Salts from 6-Arylpurine Nucleosides and Alkynes. Org Lett 2022; 24:4234-4239. [PMID: 35658480 DOI: 10.1021/acs.orglett.2c01546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Described herein is an efficient strategy for assembling a new library of functionalized polycyclic purinium salts with a wide range of anions through RhIII-catalyzed C-H activation/annulation of 6-arylpurine nucleosides with alkynes under mild reaction conditions. The resulting products displayed tunable photoluminescence covering most of the visible spectrum. Mechanistic insights delineated the rhodium catalyst's mode of action. A purinoisoquinolinium-coordinated rhodium(I) sandwich complex was well characterized and identified as the key intermediate.
Collapse
Affiliation(s)
- Qi-Liang Yang
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ying Liu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yi-Rui Luo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Zhi-Hao Li
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hong-Wei Jia
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Ya-Bo Fu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Gui-Rong Qu
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Hai-Ming Guo
- Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
4
|
Pandith A. Meet the Editorial Board Member. CURR ANAL CHEM 2022. [DOI: 10.2174/1573411018666220104220316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Anup Pandith
- Department of Chemistry
Kyung Hee University, Seoul Campus
Seoul
South Korea
| |
Collapse
|
5
|
Ito Y, Hari Y. Synthesis of Nucleobase-Modified Oligonucleotides by Post-Synthetic Modification in Solution. CHEM REC 2022; 22:e202100325. [PMID: 35119181 DOI: 10.1002/tcr.202100325] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/21/2022] [Indexed: 11/11/2022]
Abstract
Oligonucleotides containing modified nucleobases have applications in various technologies. In general, to synthesize oligonucleotides with different nucleobase structures, each modified phosphoramidite monomer needs to be prepared over multiple steps and then introduced onto the oligonucleotides, which is time-consuming and inefficient. Post-synthetic modification is a powerful strategy for preparing many types of modified oligonucleotides, especially nucleobase-modified ones. Depending on the stage of modification, post-synthetic modification can be divided into two stages: "solid-phase modification," wherein an oligonucleotide attaches to the resin, and "solution-phase modification," wherein an oligonucleotide detaches itself from the resin. In this review, we focus on post-synthetic modification in solution for the synthesis of nucleobase-modified oligonucleotides, except the modifications to linkers for conjugation. Moreover, the reactions are summarized for each modified position of the nucleobases.
Collapse
Affiliation(s)
- Yuta Ito
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima, 770-8514, Japan
| | - Yoshiyuki Hari
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Nishihama, Yamashiro-cho, Tokushima, 770-8514, Japan
| |
Collapse
|
6
|
Directly Arylated Oligonucleotides as Fluorescent Molecular Rotors for Probing DNA Single-Nucleotide Polymorphisms. Bioorg Med Chem 2022; 56:116617. [DOI: 10.1016/j.bmc.2022.116617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 11/18/2022]
|
7
|
Sebastian D, Satishkumar S, Pradhan P, Yang L, Lakshman MK. General Approach to N6,C5'-Difunctionalization of Adenosine. J Org Chem 2021; 87:18-39. [PMID: 34905365 DOI: 10.1021/acs.joc.1c01587] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Among the C6-halo purine ribonucleosides, the readily accessible 6-chloro derivative has been known to undergo slow SNAr reactions with amines, particularly aryl amines. In this work, we show that in 0.1 M AcOH in EtOH, aryl amines react quite efficiently at the C6-position of 2',3',5'-tri-O-(t-BuMe2Si)-protected 6-chloropurine riboside (6-ClP-riboside), with concomitant cleavage of the 5'-silyl group. These two-step processes proceeded in generally good yields, and notably, reactions in the absence of AcOH were much slower and/or lower yielding. Corresponding reactions of 2',3',5'-tri-O-(t-BuMe2Si)-protected 6-ClP-riboside with alkyl amines proceeded well but without desilylation at the primary hydroxyl terminus. These differences are likely due to the acidities of the ammonium chlorides formed in these reactions, and the role of AcOH was not desilylation but possibly only purine activation. With 50% aqueous TFA in THF at 0 °C, cleavage of the 5'-silyl group from 2',3',5'-tri-O-(t-BuMe2Si)-protected N6-alkyl adenosine derivatives and from 6-ClP-riboside was readily achieved. Reactions of the 5'-deprotected 6-ClP-riboside with alkyl amines proceeded in high yields and under mild conditions. Because these complementary methodologies yielded N6-aryl and -alkyl adenosine derivatives containing a free 5'-hydroxyl group, a variety of product functionalizations were undertaken to yield N6,C5'-doubly modified nucleoside analogues.
Collapse
Affiliation(s)
- Dellamol Sebastian
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States.,The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Sakilam Satishkumar
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Padmanava Pradhan
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Lijia Yang
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States
| | - Mahesh K Lakshman
- Department of Chemistry and Biochemistry, The City College of New York, 160 Convent Avenue, New York, New York 10031, United States.,The Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|