1
|
Rudolf R, Batman D, Mehner N, Walter RRM, Sarkar B. Redox-Active Triazole-Derived Mesoionic Imines with Ferrocenyl Substituents and their Metal Complexes: Directed Hydrogen-Bonding, Unusual C-H Activation and Ion-Pair Formation. Chemistry 2024; 30:e202400730. [PMID: 38634285 DOI: 10.1002/chem.202400730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 04/19/2024]
Abstract
We present herein the synthesis, characterization and complexation of ferrocenyl-substituted MIIs (mesoionic imines) and their metal complexes. In the free MIIs, strong hydrogen bonding interactions are observed between the imine-N and the C-H bonds of the ferrocenyl substituents both in the solid state and in solution. The influence of this hydrogen bonding is so strong that complexation of the MIIs with [IrCp*Cl2]2 yields unique six-membered iridacycles via C-H-activation of the corresponding C-H-site at the Fc-substituent and not the Ph-substituent. This result is in contrast to previous reports in which always a preferential C-H activation at the phenyl substituent is observed in competitive reactions in the presence of ferrocenyl substituents. The corresponding Ir complexes formed after in-situ halide exchange reaction exist in either [Ir-I] contact or as [Ir]+I- solvent separated ion-pairs depending on the solvent polarity. The iodide coordinated and solvent separated ion-pairs display drastically different physical properties. The TEP (Tolman-electronic-parameter) of these ligands was determined and lines up with previously reported MII-ligands. The redox properties were investigated by a combination of electrochemical and spectroelectrochemical methods. We show here how non-covalent interactions can have a drastic influence on the physical and chemical properties of these new class of compounds.
Collapse
Affiliation(s)
- Richard Rudolf
- Universität Stuttgart, Institut für Anorganische Chemie, Pfaffenwaldring 55, 70569, Stuttgart
| | - Derman Batman
- Universität Stuttgart, Institut für Anorganische Chemie, Pfaffenwaldring 55, 70569, Stuttgart
| | - Niklas Mehner
- Universität Stuttgart, Institut für Anorganische Chemie, Pfaffenwaldring 55, 70569, Stuttgart
| | - Robert R M Walter
- Universität Stuttgart, Institut für Anorganische Chemie, Pfaffenwaldring 55, 70569, Stuttgart
| | - Biprajit Sarkar
- Universität Stuttgart, Institut für Anorganische Chemie, Pfaffenwaldring 55, 70569, Stuttgart
| |
Collapse
|
2
|
Ževart T, Pinter B, Lozinšek M, Urankar D, Jansen-van Vuuren RD, Košmrlj J. Towards structurally versatile mesoionic N-heterocyclic olefin ligands and their coordination to palladium, gold, and boron hydride. Dalton Trans 2024; 53:8915-8925. [PMID: 38590282 DOI: 10.1039/d4dt00195h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
We have developed an efficient and versatile approach for the synthesis of a family of 1,2,3-triazole-based mesoionic N-heterocyclic olefin (mNHO) ligands and investigated their coordination to palladium, gold, and boron hydride experimentally and computationally. We reacted mNHOs obtained through deprotonation of the corresponding methylated and ethylated 1,3,4-triaryl-1,2,3-triazolium salts with [Pd(allyl)Cl]2 to give the corresponding [Pd(η3-allyl)Cl(mNHO)] coordination complexes. 13C NMR data revealed the strong σ-donor character of the mNHO ligands, consistent with the calculated bond orders and atom-condensed charges. Furthermore, we also synthesized [AuCl(mNHO)] and a BH3-mNHO adduct by reacting the triazolium salts with AuCl(SMe2) and BH3·THF, respectively. The BH3-mNHO adduct was tested in the reduction of select aldehydes and ketones to alcohols.
Collapse
Affiliation(s)
- Tisa Ževart
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI 1000 Ljubljana, Slovenia.
| | - Balazs Pinter
- The University of Texas at El Paso, 500 West University Avenue, El Paso, TX 79968, USA
| | - Matic Lozinšek
- Jožef Stefan Institute, Jamova cesta 39, SI 1000 Ljubljana, Slovenia
| | - Damijana Urankar
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI 1000 Ljubljana, Slovenia.
| | - Ross D Jansen-van Vuuren
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI 1000 Ljubljana, Slovenia.
| | - Janez Košmrlj
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Večna pot 113, SI 1000 Ljubljana, Slovenia.
| |
Collapse
|
3
|
Eitzinger A, Reitz J, Antoni PW, Mayr H, Ofial AR, Hansmann MM. Pushing the Upper Limit of Nucleophilicity Scales by Mesoionic N-Heterocyclic Olefins. Angew Chem Int Ed Engl 2023; 62:e202309790. [PMID: 37540606 DOI: 10.1002/anie.202309790] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/06/2023]
Abstract
A series of mesoionic, 1,2,3-triazole-derived N-heterocyclic olefins (mNHOs), which have an extraordinarily electron-rich exocyclic CC-double bond, was synthesized and spectroscopically characterized, in selected cases by X-ray crystallography. The kinetics of their reactions with arylidene malonates, ArCH=C(CO2 Et)2 , which gave zwitterionic adducts, were investigated photometrically in THF at 20 °C. The resulting second-order rate constants k2 (20 °C) correlate linearly with the reported electrophilicity parameters E of the arylidene malonates (reference electrophiles), thus providing the nucleophile-specific N and sN parameters of the mNHOs according to the correlation lg k2 (20 °C)=sN (N+E). With 21
Collapse
Affiliation(s)
- Andreas Eitzinger
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 (Haus F), 81377, München, Germany
| | - Justus Reitz
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Patrick W Antoni
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| | - Herbert Mayr
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 (Haus F), 81377, München, Germany
| | - Armin R Ofial
- Department Chemie, Ludwig-Maximilians-Universität München, Butenandtstr. 5-13 (Haus F), 81377, München, Germany
| | - Max M Hansmann
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227, Dortmund, Germany
| |
Collapse
|
4
|
Abstract
This Perspective article highlights the recent development of mesoionic N-heterocyclic olefins (mNHOs), where the exo-cyclic olefinic carbon is not bonded to strongly electron-withdrawing groups. The unquenched basicity and nucleophilicity of the exo-cyclic olefinic carbon make mNHOs strong σ-donors and enable unique reactivity patterns.
Collapse
Affiliation(s)
- Qiuming Liang
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6.
| | - Datong Song
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, Canada, M5S 3H6.
| |
Collapse
|
5
|
Qu ZW, Zhu H, Streubel R, Grimme S. Catalytic Isomerization of Unprotected Mesoionic N‐heterocyclic Olefins and Their Lewis Adducts. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Zheng-Wang Qu
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Mulliken Center for Theoretical Chemistry Beringstr. 4 D-53115 Bonn GERMANY
| | - Hui Zhu
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Mulliken Center for Theoretical Chemistry Bonn GERMANY
| | - Rainer Streubel
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Institut für Anorganische Chemie Bonn GERMANY
| | - Stefan Grimme
- University of Bonn: Rheinische Friedrich-Wilhelms-Universitat Bonn Mulliken Center for Theoretical Chemistry Bonn GERMANY
| |
Collapse
|
6
|
Soto J, Algarra M, Peláez D. Nitrene formation is the first step of the thermal and photochemical decomposition reactions of organic azides. Phys Chem Chem Phys 2022; 24:5109-5115. [PMID: 35156109 DOI: 10.1039/d1cp05785e] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
In this work, the decomposition of a prototypical azide, isopropyl azide, both in the ground and excited states, has been investigated through the use of multiconfigurational CASSCF and MS-CASPT2 electronic structure approaches. Particular emphasis has been placed on the thermal reaction starting at the S0 ground state surface. It has been found that the azide thermally decomposes via a stepwise mechanism, whose rate-determining step is the formation of isopropyl nitrene, which is, in turn, the first step of the global mechanism. After that, the nitrene isomerizes to the corresponding imine derivative. Two routes are possible for such a decomposition: (i) a spin-allowed path involving a transition state; and (ii) a spin-forbidden one via a S0/T0 intersystem crossing. Both intermediates have been determined and characterised. Their associated relative energies have been found to be quite similar, 45.75 and 45.52 kcal mol-1, respectively. To complete this study, the kinetics of the singlet and triplet channels are modeled with the MESMER (Master Equation Solver for Multi-Energy Well Reactions) code by applying the RRKM and Landau-Zener (with WKB tunnelling correction) theories, respectively. It is found that the canonical rate-coefficients of the singlet path are 2-orders of magnitude higher than the rate-coefficients of the forbidden reaction. In addition, the concerted mechanism has been investigated that would lead to the formation of the imine derivative and nitrogen extrusion in the first step of the decomposition. After a careful analysis of CASSCF calculations with different active spaces and their comparison with single electronic configuration methods (MP2 and B3LYP), the concerted mechanism is discarded.
Collapse
Affiliation(s)
- Juan Soto
- Department of Physical Chemistry, Faculty of Science, University of Málaga, E-29071 Málaga, Spain.
| | - Manuel Algarra
- INAMAT2 Institute for Advanced Materials and Mathematics, Department of Sciences, Campus de Arrosadia, 31006 Pamplona, Spain
| | - Daniel Peláez
- Institut des Sciences Moléculaires d'Orsay (ISMO) - UMR 8214, Université Paris-Saclay, 91405 Orsay Cedex, Spain
| |
Collapse
|
7
|
Liang Q, Hayashi K, Li L, Song D. Dioxygenation of unprotected mesoionic N-heterocyclic olefins. Chem Commun (Camb) 2021; 57:10927-10930. [PMID: 34596194 DOI: 10.1039/d1cc04695k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We report the dioxygenation of mesoionic N-heterocyclic olefins (mNHOs) using molecular dioxygen. For 1,2,3-triazole-derived mNHOs possessing a vinyl proton and at least one acidic C-H group, they are oxidized into the corresponding triazolium benzoate salts, whereas those without vinyl proton or an acidic C-H group are oxidized into triazolium oxide and ketones/aldehydes.
Collapse
Affiliation(s)
- Qiuming Liang
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Kasumi Hayashi
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| | - Longfei Li
- College of Pharmacy, Hebei University, Baoding 071002, Hebei, P. R. China
| | - Datong Song
- Davenport Chemical Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada.
| |
Collapse
|
8
|
Dubey G, Awari S, Singh T, Sahoo SC, Bharatam PV. Mesoionic and N-Heterocyclic Carbenes Coordinated N + Center: Experimental and Computational Analysis. Chempluschem 2021; 86:1416-1420. [PMID: 34636173 DOI: 10.1002/cplu.202100281] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/17/2021] [Indexed: 11/07/2022]
Abstract
N-Heterocyclic carbenes, carbocyclic carbenes, remote N-heterocyclic carbenes and N-heterocyclic silylenes are known to form L→N+ coordination bonds. However, mesoionic carbenes (MICs) are not reported to form coordination bonds with cationic nitrogen. Herein, synthesis and quantum chemical studies were performed on 1,2,3-triazol-5-ylidene stabilized N+ center. Six compounds with MIC→N+ ←NHC were synthesized. Density functional theory calculations and energy decomposition analysis were carried out to explore the bonding situation between MIC and N+ center. The C→N+ bond lengths were in the range of 1.295-1.342 Å and bond dissociation energies were <400 kcal/mol. Natural bond orbital analysis supported the presence of excess electron density (>3 electrons) at the N+ center. The computational and X-ray diffraction analysis results confirmed the presence of divalent NI character of center nitrogen and MIC→N+ ←NHC coordination interactions.
Collapse
Affiliation(s)
- Gurudutt Dubey
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062, Punjab, India
| | - Shruti Awari
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062, Punjab, India
| | - Tejender Singh
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062, Punjab, India
| | - Subash C Sahoo
- Department of Chemistry, Panjab University, Sector 14, Chandigarh, 160014, India
| | - Prasad V Bharatam
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, 160062, Punjab, India
| |
Collapse
|
9
|
Antoni PW, Reitz J, Hansmann MM. N 2/CO Exchange at a Vinylidene Carbon Center: Stable Alkylidene Ketenes and Alkylidene Thioketenes from 1,2,3-Triazole Derived Diazoalkenes. J Am Chem Soc 2021; 143:12878-12885. [PMID: 34348463 DOI: 10.1021/jacs.1c06906] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
We present a new class of room-temperature stable diazoalkenes featuring a 1,2,3-triazole backbone. Dinitrogen of the diazoalkene moiety can be thermally displaced by an isocyanide and carbon monoxide. The latter alkylidene ketenes are typically considered as highly reactive compounds, traditionally only accessible by flash vacuum pyrolysis. We present a new and mild synthetic approach to the first structurally characterized alkylidene ketenes by a substitution reaction. Density functional theory calculations suggest the substitution with isocyanides to take place via a stepwise addition/elimination mechanism. In the case of carbon monoxide, the reaction proceeds through an unusual concerted exchange at a vinylidene carbon center. The vinylidene ketenes react with carbon disulfide via a four-membered thiete intermediate to give vinylidene thioketenes under release of COS. We present spectroscopic as well as structural data for the complete isoelectronic series (R2C═C═X; X = N2, CO, CNR, CS) including 1J(13C-13C) data. As N2, CO, and isocyanides belong to the archetypical ligands in transition-metal chemistry, this process can be interpreted in analogy to coordination chemistry as a ligand exchange reaction at a vinylidene carbon center.
Collapse
Affiliation(s)
- Patrick W Antoni
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Justus Reitz
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| | - Max M Hansmann
- Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Str. 6, 44227 Dortmund, Germany
| |
Collapse
|