1
|
Qin S, Liao Y, Ni Q, Cao R, Chan ASC, Qiu L. Lewis Acid-Mediated Regioselective Hydrofunctionalization of Styrenes with Isatins and Heterocycles. J Org Chem 2025; 90:1016-1023. [PMID: 39785243 DOI: 10.1021/acs.joc.4c02173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
The ligand-free Lewis acid-mediated regioselective hydroamination and hydroarylation of styrenes have been successfully developed in the presence of isatins or heterocyclic aryl compounds such as benzothiophenes and benzofurans. The reactions tolerate a variety of functional groups and afford the corresponding products in moderate to good yields. Deuterium labeling experiments show that the functionalized hydrogen of styrenes was derived from the nitrogen-hydrogen of the substrates in the hydroamination. Preliminary mechanistic studies suggest that the reactions may be a radical or a carbocation process.
Collapse
Affiliation(s)
- Shengxiang Qin
- School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Yunshi Liao
- School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Qiang Ni
- School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Rihui Cao
- School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | - Albert S C Chan
- School of Chemistry, IGCME, The Key Laboratory of Low-Carbon Chemistry & Energy Conservation of Guangdong Province, Guangdong Provincial Key Laboratory of Chiral Molecules and Drug Discovery, Sun Yat-sen University, Guangzhou 510006, People's Republic of China
| | | |
Collapse
|
2
|
Li MY, Chen P, Pan MX, Hu HL, Jiang YJ. Palladium-catalyzed amidation of carbazole derivatives via hydroamination of isocyanates. Org Biomol Chem 2024. [PMID: 39005158 DOI: 10.1039/d4ob00771a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
The first amidation of carbazoles at the N9 position via palladium-catalyzed hydroamination of isocyanates is demonstrated. This simple, general and efficient method could deliver a wide range of carbazole-N-carboxamides in up to 99% yield. The salient features of this transformation include simple conditions with no need for a strong base, high chemo- and regio-selectivities and good functional group tolerance. In particular, this work-up-free and chromatography-free protocol is time-saving, cost-effective and user-friendly.
Collapse
Affiliation(s)
- Meng-Yuan Li
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Peng Chen
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Ming-Xia Pan
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Hao-Lan Hu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Yi-Jun Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, Institute of Mass Spectrometry, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China.
| |
Collapse
|
3
|
Winfrey L, Yun L, Passeri G, Suntharalingam K, Pulis AP. H 2 O ⋅ B(C 6 F 5 ) 3 -Catalyzed para-Alkylation of Anilines with Alkenes Applied to Late-Stage Functionalization of Non-Steroidal Anti-Inflammatory Drugs. Chemistry 2024; 30:e202303130. [PMID: 38224207 DOI: 10.1002/chem.202303130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Indexed: 01/16/2024]
Abstract
Anilines are core motifs in a variety of important molecules including medicines, materials and agrochemicals. We report a straightforward procedure that allows access to new chemical space of anilines via their para-C-H alkylation. The method utilizes commercially available catalytic H2 O ⋅ B(C6 F5 )3 and is highly selective for para-C-alkylation (over N-alkylation and ortho-C-alkylation) of anilines, with a wide scope in both the aniline substrates and alkene coupling partners. Readily available alkenes are used, and include new classes of alkene for the first time. The mild reaction conditions have allowed the procedure to be applied to the late-stage-functionalization of non-steroidal anti-inflammatory drugs (NSAIDs), including fenamic acids and diclofenac. The formed novel NSAID derivatives display improved anti-inflammatory properties over the parent NSAID structure.
Collapse
Affiliation(s)
- Laura Winfrey
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Lei Yun
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Ginevra Passeri
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | | | - Alexander P Pulis
- School of Chemistry, University of Leicester, Leicester, LE1 7RH, United Kingdom
| |
Collapse
|
4
|
Mandal D, Roychowdhury S, Biswas JP, Maiti S, Maiti D. Transition-metal-catalyzed C-H bond alkylation using olefins: recent advances and mechanistic aspects. Chem Soc Rev 2022; 51:7358-7426. [PMID: 35912472 DOI: 10.1039/d1cs00923k] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal catalysis has contributed immensely to C-C bond formation reactions over the last few decades, and alkylation is no exception. The superiority of such methodologies over traditional alkylation is evident from minimal reaction steps, shorter reaction times, and atom economy while also allowing control over regio- and stereo-selectivity. In particular, hydrocarbonation of alkenes has grabbed increased attention due its fundamental ability to effectively and selectively synthesise a wide range of industrially and pharmaceutically relevant moieties. This review attempts to provide a scientific viewpoint and a systematic analysis of the recent developments in transition-metal-catalyzed alkylation of various C-H bonds using simple and activated olefins. The key features and mechanistic studies involved in these transformations are described briefly.
Collapse
Affiliation(s)
- Debasish Mandal
- Department of Chemistry, Indian Institute of Science Education and Research, Bhopal, Bhopal Bypass Road, Bhauri, Bhopal, 462066, India
| | - Sumali Roychowdhury
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Jyoti Prasad Biswas
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Siddhartha Maiti
- School of Bioengineering, Vellore Institute of Technology, Bhopal University, Bhopal-Indore Highway, Kothrikalan, Sehore, Madhya Pradesh-466114, India
| | - Debabrata Maiti
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India. .,Department of Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
5
|
Ma F, Wu XT, Miao LW, Sun F, Jiang YJ, Chen P. Metal‐Free One‐Pot Synthesis of Tri‐ and Difluoromethylated Bis(carbazolyl)methanes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
6
|
Kumar G, Qu ZW, Grimme S, Chatterjee I. Boron-Catalyzed Hydroarylation of 1,3-Dienes with Arylamines. Org Lett 2021; 23:8952-8957. [PMID: 34709846 DOI: 10.1021/acs.orglett.1c03457] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Catalytic hydroarylation reactions of conjugated dienes are achieved using tris(pentafluorophenyl)borane as a Lewis acid catalyst under mild reaction conditions. This new protocol shows a broad substrate scope for the highly regioselective functionalization of sterically hindered aniline derivatives. Experimental and extensive density functional theory mechanistic studies show that the complex of residual water and B(C6F5)3 plays a crucial role in the aryl-assisted protonation of conjugated dienes, forming allyl cation intermediates that induce the facile electrophilic aromatic substitution of aniline substrates.
Collapse
Affiliation(s)
- Gautam Kumar
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
| | - Zheng-Wang Qu
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - Stefan Grimme
- Mulliken Center for Theoretical Chemistry, Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität Bonn, Beringstrasse 4, 53115 Bonn, Germany
| | - Indranil Chatterjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab 140001, India
| |
Collapse
|