1
|
Reddy Mutra M, Chandana TL, Wang YJ, Wang JJ. Metal Additive-Free Iodine-Promoted Reorganization of Ynamide-Ynes and Stereoselective 1,2-Diiodination. Chem Asian J 2024:e202401531. [PMID: 39614410 DOI: 10.1002/asia.202401531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 11/29/2024] [Indexed: 12/01/2024]
Abstract
We report a metal additive-free iodine-promoted one-step structural reorganization of ynamide-ynes and simultaneous stereoselective 1,2-diiodination of the migrated alkyne to form stereospecific tetrasubstituted alkenyl diiodo-tethered indoles (E-isomer). Molecular iodine is cost effective, user friendly, less toxic, commercially available, and easy to handle. The key features of the reaction include metal-and additive-free environment, selectivity, structural reorganization, mild reaction conditions, simple workup, and gram-scale synthesis. This transformation generates multiple bonds [nitrogen (N)-carbon (C)sp2, Csp2-Csp2, 2 Csp2-iodine (I)] via N-Csp bond cleavage in ynamide-ynes.
Collapse
Affiliation(s)
- Mohana Reddy Mutra
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100 Shiquan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan
| | - T L Chandana
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100 Shiquan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Yun-Jou Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100 Shiquan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100 Shiquan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan
- Department of Medical Research, Kaohsiung Medical University Hospital, No. 100 Tzyou 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan
| |
Collapse
|
2
|
Satyanarayana ANV, Pattanayak P, Chatterjee T. Solvent-Controlled, Atom-Economic, and Highly Regio- and Stereoselective Halo-Chalcogenations of Ynamides: Green Synthesis of Stereodefined Tetrasubstituted Alkenes Bearing Four Different Functional Groups. J Org Chem 2024; 89:11455-11466. [PMID: 39105699 DOI: 10.1021/acs.joc.4c01134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The synthesis of stereodefined tetrasubstituted alkenes bearing four different functional groups is challenging. Herein, we disclose a 100% atom-economic and highly regio- and stereoselective halo-chalcogenations, in particular, chlorosulfenylation, bromosulfenylation, chloroselenation, and bromoselenation, of ynamides in toluene at room temperature under an aerobic atmosphere for the synthesis of a wide variety of stereodefined tetrasubstituted alkenes bearing four different functional groups in excellent yields. Notably, all the reactions are highly efficient and furnished the desired products in excellent yield (average yield >96%) and stereoselectivity (Z/E = 90:10 to >99:1) within a short time (15-30 min). Interestingly, the high (Z)-stereoselectivity (syn-addition) is controlled by the solvent. The transformation does not require any catalyst, oxidizing or reducing reagent, or external energy. The products were obtained pure by evaporating the solvent after the reaction and washing the crude product with either pentane or ethanol (column-chromatography-free protocol). Moreover, the solvent toluene was recovered and reused in subsequent reactions, which makes the protocol highly sustainable. The protocol is efficiently scalable (96% yield) on a gram scale. Notably, the products were synthetically diversified to other new classes of stereodefined tetrasubstituted alkenes. Significantly, the green chemistry metrics of the protocol are found to be excellent.
Collapse
Affiliation(s)
- Appanapalli N V Satyanarayana
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, Telangana India
| | - Paramita Pattanayak
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, Telangana India
| | - Tanmay Chatterjee
- Department of Chemistry, Birla Institute of Technology and Science, Pilani (BITS Pilani), Hyderabad Campus, Jawahar Nagar, Hyderabad 500078, Telangana India
| |
Collapse
|
3
|
Yang JM, Feng GC, Huang X, Wang YL, Wei QY, Wu B. Rhodium(III)-Catalyzed Intramolecular Cyclization and Sequential Aromatization of Ynamides with Propargyl Esters: Access to 2,5-Dihydropyrroles and Pyrroles. Org Lett 2024; 26:6191-6196. [PMID: 39007534 DOI: 10.1021/acs.orglett.4c02079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Disclosed herein is a rhodium(III)-catalyzed intramolecular cyclization of ynamides with propargyl esters. A variety of highly functionalized 2,5-dihydropyrroles were obtained in moderate to good yields with high E/Z selectivities. Subsequent oxidation of the products gave valuable pyrrole derivatives. Additionally, scale-up reactions and late-stage derivatizations highlight the potential synthetic utility of this methodology.
Collapse
Affiliation(s)
- Jin-Ming Yang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei 430074, People's Republic of China
| | - Guang-Chao Feng
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei 430074, People's Republic of China
| | - Xiang Huang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei 430074, People's Republic of China
| | - Yi-Lin Wang
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei 430074, People's Republic of China
| | - Qing-Yi Wei
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei 430074, People's Republic of China
| | - Bin Wu
- School of Pharmaceutical Sciences, South-Central Minzu University, Wuhan, Hubei 430074, People's Republic of China
| |
Collapse
|
4
|
Qi C, Shen X, Fang W, Chang J, Wang XN. TMSOTf-Catalyzed [4 + 2] Annulation of Ynamides and β-(2-Aminophenyl)-α,β-ynones for the Synthesis 2-Aminoquinolines. Org Lett 2024; 26:3503-3508. [PMID: 38661174 DOI: 10.1021/acs.orglett.4c00763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A metal-free TMSOTf-catalyzed [4 + 2] annulation of ynamides with β-(2-aminophenyl)-α,β-ynones enables the regiospecific and facile assembly of 2-aminoquinoline frameworks. The catalyst TMSOTf presented a remarkable advancement compared to previously reported transition-metal catalysts. A wide range of 3-aryl/alkyl-substituted 2-aminoquinolines were generated in moderate to excellent yields due to the mild conditions.
Collapse
Affiliation(s)
- Chaofan Qi
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiaoxiao Shen
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Wozheng Fang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Junbiao Chang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| | - Xiao-Na Wang
- Pingyuan Laboratory, State Key Laboratory of Antiviral Drugs, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan 450001, P.R. China
| |
Collapse
|
5
|
Mutra MR, Li J, Wang JJ. Light-mediated sulfonyl-iodination of ynamides and internal alkynes. Chem Commun (Camb) 2023; 59:6584-6587. [PMID: 37183618 DOI: 10.1039/d3cc00842h] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We synthesized tetrasubstituted olefins regioselectively and stereoselectively from ynamides and internal alkynes with sulfonyl iodides under blue LEDs in few minutes. The key features are being metal-free, easy to handle, simple, broad in scope, and environmentally friendly. Furthermore, a gram-scale experiment was conducted, and the synthesized corresponding sulfonyl-iodinated products were smoothly altered into various other products.
Collapse
Affiliation(s)
- Mohana Reddy Mutra
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan.
| | - Jing Li
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan.
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shiquan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan.
- Department of Medical Research, Kaohsiung Medical University Hospital, No. 100 Tzyou 1st Rd, Sanmin District, Kaohsiung City 807, Taiwan
| |
Collapse
|
6
|
Yang FY, Han TJ, Jia SK, Wang MC, Mei GJ. Catalytic [2,3]-sigmatropic rearrangement of sulfonium ylides derived from azoalkenes: non-carbenoid Doyle-Kirmse reaction. Chem Commun (Camb) 2023; 59:3107-3110. [PMID: 36808428 DOI: 10.1039/d3cc00160a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
The Sc(III)-catalyzed [2,3]-sigmatropic rearrangement of sulfonium ylides derived from azoalkenes has been established. Owing to the absence of a carbenoid intermediate, this protocol represents the first non-carbenoid variant of the Doyle-Kirmse reaction. Under mild conditions, a variety of tertiary thioethers have been readily prepared in good to excellent yields.
Collapse
Affiliation(s)
- Fu-Yuan Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Tian-Jiao Han
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Shi-Kun Jia
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Min-Can Wang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| | - Guang-Jian Mei
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Mutra MR, Wang JJ. Photoinduced ynamide structural reshuffling and functionalization. Nat Commun 2022; 13:2345. [PMID: 35487916 PMCID: PMC9055057 DOI: 10.1038/s41467-022-30001-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 04/05/2022] [Indexed: 12/11/2022] Open
Abstract
The radical chemistry of ynamides has recently drawn the attention of synthetic organic chemists to the construction of various N-heterocyclic compounds. Nevertheless, the ynamide-radical chemistry remains a long-standing challenge for chemists due to its high reactivity, undesirable byproducts, severe inherent regio- and chemoselective problems. Importantly, the ynamide C(sp)-N bond fission remains an unsolved challenge. In this paper, we observe Photoinduced radical trigger regio- and chemoselective ynamide bond fission, structural reshuffling and functionalization of 2-alkynyl-ynamides to prepare synthetically inaccessible/challenging chalcogen-substituted indole derivatives with excellent step/atom economy. The key breakthroughs of this work includes, ynamide bond cleavage, divergent radical precursors, broad scope, easy to handle, larger-scale reactions, generation of multiple bonds (N-C(sp2), C(sp2)-C(sp2), C(sp2)-SO2R/C-SR, and C-I/C-Se/C-H) in a few minutes without photocatalysts, metals, oxidants, additives. Control experiments and 13C-labeling experiments supporting the conclusion that sulfone radicals contribute to ynamide structural reshuffling processes via a radical pathway. Although ynamides have emerged as a versatile class of compounds for organic synthesis, the radical chemistry of ynamides usually proceeds with the expected connectivity largely intact. Here the authors show a methodology by which the C(sp)–N bond undergoes scission, alkyne migration and functionalization under blue LED light in the absence of metals or additives.
Collapse
Affiliation(s)
- Mohana Reddy Mutra
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan
| | - Jeh-Jeng Wang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, No. 100, Shih-Chuan 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan. .,Department of Medical Research, Kaohsiung Medical University Hospital, No. 100, Tzyou 1st Rd, Sanmin District, Kaohsiung City, 807, Taiwan.
| |
Collapse
|
8
|
Hansjacob P, Leroux FR, Gandon V, Donnard M. Palladium-Catalyzed Silylcyanation of Ynamides: Regio- and Stereoselective Access to Tetrasubstituted 3-Silyl-2-Aminoacrylonitriles. Angew Chem Int Ed Engl 2022; 61:e202200204. [PMID: 35060272 DOI: 10.1002/anie.202200204] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Indexed: 01/02/2023]
Abstract
The palladium-catalyzed silylcyanation of ynamides is described. This reaction is fully regioselective, delivering tetrasubstituted 2-aminoacrylonitriles derivatives exclusively. Unexpectedly, the nature (aryl or alkyl) of the substituent located at the β-position of the ynamide directly controls the stereoselectivity. The reaction tolerates a number of functional groups and can be considered as the first general access to fully substituted 2-aminoacrylonitriles. Given the singular reactivity observed, a computational study was performed to shed light on the mechanism of this intriguing transformation. Relying on the specific reactivity of the newly installed vinylsilane functionality, the scope of 2-aminoacrylonitriles has been enlarged by postfunctionalization.
Collapse
Affiliation(s)
- Pierre Hansjacob
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| | - Frédéric R Leroux
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405, Orsay cedex, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128, Palaiseau cedex, France
| | - Morgan Donnard
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042), Université de Strasbourg, Université de Haute-Alsace, CNRS, 67000, Strasbourg, France
| |
Collapse
|
9
|
Vanjari R, Dutta S, Yang S, Gandon V, Sahoo AK. Palladium-Catalyzed Regioselective Arylalkenylation of Ynamides. Org Lett 2022; 24:1524-1529. [PMID: 35157460 DOI: 10.1021/acs.orglett.2c00197] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A cationic palladium-catalyzed arylalkenylation of ynamides is presented. The putative keteniminium arylpalladium intermediate likely dictates the regioselective carbopalladation of the ynamide to form a vinylpalladium species. The capture of this complex by the olefin yields linear conjugated β-alkenyl aminodienes (especially with trans selectivity). The transformation features a broad scope with labile functional group tolerance and makes 42 unusual molecular scaffolds with structural diversity. DFT studies provide valuable insights into the reaction mechanism.
Collapse
Affiliation(s)
- Rajeshwer Vanjari
- School of Chemistry, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Shubham Dutta
- School of Chemistry, University of Hyderabad, Hyderabad-500046, Telangana, India
| | - Shengwen Yang
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay Cedex, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau Cedex, France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), CNRS UMR 8182, Université Paris-Saclay, Bâtiment 420, 91405 Orsay Cedex, France.,Laboratoire de Chimie Moléculaire (LCM), CNRS UMR 9168, Ecole Polytechnique, Institut Polytechnique de Paris, route de Saclay, 91128 Palaiseau Cedex, France
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, Hyderabad-500046, Telangana, India
| |
Collapse
|
10
|
Hansjacob P, Leroux FR, Gandon V, Donnard M. Palladium‐Catalyzed Silylcyanation of Ynamides: Regio‐ and Stereoselective Access to Tetrasubstituted 3‐Silyl‐2‐Aminoacrylonitriles. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202200204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Pierre Hansjacob
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042) Université de Strasbourg Université de Haute-Alsace CNRS 67000 Strasbourg France
| | - Frédéric R. Leroux
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042) Université de Strasbourg Université de Haute-Alsace CNRS 67000 Strasbourg France
| | - Vincent Gandon
- Institut de Chimie Moléculaire et des Matériaux d'Orsay CNRS UMR 8182 Université Paris-Saclay Bâtiment 420 91405 Orsay cedex France
- Laboratoire de Chimie Moléculaire (LCM) CNRS UMR 9168 Ecole Polytechnique Institut Polytechnique de Paris route de Saclay 91128 Palaiseau cedex France
| | - Morgan Donnard
- Laboratoire d'Innovation Moléculaire et Applications (UMR 7042) Université de Strasbourg Université de Haute-Alsace CNRS 67000 Strasbourg France
| |
Collapse
|
11
|
Sahoo AK, Rangu P, Suresh K, Dutta S, Vangara S. Metal-Free Stereoselective Addition of Propiolic acids to Ynamides: A Concise Synthetic Route to Highly Substituted Ene-Diyne/Dienyne-( E)- N,O-Acetals. NEW J CHEM 2022. [DOI: 10.1039/d2nj01907h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straight forward and sustainable approach for 1,2-addition of propiolic acids to ynamide has led to bench stable sp2 (E)-enol-enamides of enediynes & dienynes. The reaction is chemo, regio, as...
Collapse
|
12
|
Mallick RK, Dutta S, Protim Gogoi M, Sahoo AK. Keteniminium Induced Dienone‐Phenol Rearrangement and Intramolecular 6‐
endo
‐dig Cyclization Cascade of Yne‐Dienone. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Shubham Dutta
- School of Chemistry University of Hyderabad 500046 Hyderabad India
| | | | - Akhila K. Sahoo
- School of Chemistry University of Hyderabad 500046 Hyderabad India
| |
Collapse
|
13
|
Shandilya S, Protim Gogoi M, Dutta S, Sahoo AK. Gold-Catalyzed Transformation of Ynamides. CHEM REC 2021; 21:4123-4149. [PMID: 34432929 DOI: 10.1002/tcr.202100159] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/27/2021] [Indexed: 11/07/2022]
Abstract
Ynamide, a unique species with inherited polarization of nitrogen lone pair electron to triple bond, has been largely used for the developement of novel synthetic methods and the construction of unusual N-bearing heterocycles. The reaction versatility of ynamide on umpolung reactivity, radical reactions and asymmetric synthesis have been recently reviewed. This review provides an overall scenic view into the gold catalyzed transformation of ynamides. The ynamides reactivity towards nitrogen-transfer reagents, such as azides, nitrogen ylides, isoxazoles, and anthranils; oxygen atom-transfer reagents, like nitrones, sulfoxides, and pyridine N-oxides; and carbon nucleophiles under gold catalysis are herein uncovered. The scope as well the mechanistic insights of each reaction is also briefed.
Collapse
Affiliation(s)
| | | | - Shubham Dutta
- School of Chemistry, University of Hyderabad, 500046, Hyderabad, India
| | - Akhila K Sahoo
- School of Chemistry, University of Hyderabad, 500046, Hyderabad, India
| |
Collapse
|