1
|
Koshani R, Pitcher ML, Yu J, Mahajan CL, Kim SH, Sheikhi A. Plant Cell Wall-Like Soft Materials: Micro- and Nanoengineering, Properties, and Applications. NANO-MICRO LETTERS 2025; 17:103. [PMID: 39777633 PMCID: PMC11711842 DOI: 10.1007/s40820-024-01569-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 10/21/2024] [Indexed: 01/11/2025]
Abstract
Plant cell wall (CW)-like soft materials, referred to as artificial CWs, are composites of assembled polymers containing micro-/nanoparticles or fibers/fibrils that are designed to mimic the composition, structure, and mechanics of plant CWs. CW-like materials have recently emerged to test hypotheses pertaining to the intricate structure-property relationships of native plant CWs or to fabricate functional materials. Here, research on plant CWs and CW-like materials is reviewed by distilling key studies on biomimetic composites primarily composed of plant polysaccharides, including cellulose, pectin, and hemicellulose, as well as organic polymers like lignin. Micro- and nanofabrication of plant CW-like composites, characterization techniques, and in silico studies are reviewed, with a brief overview of current and potential applications. Micro-/nanofabrication approaches include bacterial growth and impregnation, layer-by-layer assembly, film casting, 3-dimensional templating microcapsules, and particle coating. Various characterization techniques are necessary for the comprehensive mechanical, chemical, morphological, and structural analyses of plant CWs and CW-like materials. CW-like materials demonstrate versatility in real-life applications, including biomass conversion, pulp and paper, food science, construction, catalysis, and reaction engineering. This review seeks to facilitate the rational design and thorough characterization of plant CW-mimetic materials, with the goal of advancing the development of innovative soft materials and elucidating the complex structure-property relationships inherent in native CWs.
Collapse
Affiliation(s)
- Roya Koshani
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Mica L Pitcher
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jingyi Yu
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Christine L Mahajan
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Seong H Kim
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
- Materials Research Institute, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Amir Sheikhi
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Biomedical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
- Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Neurosurgery, College of Medicine, The Pennsylvania State University, Hershey, PA, 17033, USA.
| |
Collapse
|
2
|
Deiana L, Avella A, Rafi AA, Mincheva R, De Winter J, Lo Re G, Córdova A. In Situ Enzymatic Polymerization of Ethylene Brassylate Mediated by Artificial Plant Cell Walls in Reactive Extrusion. ACS APPLIED POLYMER MATERIALS 2024; 6:10414-10422. [PMID: 39296488 PMCID: PMC11406489 DOI: 10.1021/acsapm.4c01568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 09/21/2024]
Abstract
Herein, we describe a solvent-free bioinspired approach for the polymerization of ethylene brassylate. Artificial plant cell walls (APCWs) with an integrated enzyme were fabricated by self-assembly, using microcrystalline cellulose as the main structural component. The resulting APCW catalysts were tested in bulk reactions and reactive extrusion, leading to high monomer conversion and a molar mass of around 4 kDa. In addition, we discovered that APCW catalyzes the formation of large ethylene brassylate macrocycles. The enzymatic stability and efficiency of the APCW were investigated by recycling the catalyst both in bulk and reactive extrusion. The obtained poly(ethylene brassylate) was applied as a biobased and biodegradable hydrophobic paper coating.
Collapse
Affiliation(s)
- Luca Deiana
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, Sundsvall 85179, Sweden
| | - Angelica Avella
- Department of Industrial and Materials Science, Chalmers University of Technology, Rännvägen 2a, Gothenburg 41258, Sweden
| | - Abdolrahim A Rafi
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, Sundsvall 85179, Sweden
| | - Rosica Mincheva
- Laboratory of Polymeric and Composite Materials, University of Mons (UMONS), 7000 Mons, Belgium
| | - Julien De Winter
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOs), University of Mons (UMONS), 7000 Mons, Belgium
| | - Giada Lo Re
- Department of Industrial and Materials Science, Chalmers University of Technology, Rännvägen 2a, Gothenburg 41258, Sweden
| | - Armando Córdova
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, Sundsvall 85179, Sweden
| |
Collapse
|
3
|
Deiana L, Badali E, Rafi AA, Tai CW, Bäckvall JE, Córdova A. Cellulose-Supported Heterogeneous Gold-Catalyzed Cycloisomerization Reactions of Alkynoic Acids and Allenynamides. ACS Catal 2023; 13:10418-10424. [PMID: 37560186 PMCID: PMC10407851 DOI: 10.1021/acscatal.3c02722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Indexed: 08/11/2023]
Abstract
Herein, we describe efficient nanogold-catalyzed cycloisomerization reactions of alkynoic acids and allenynamides to enol lactones and dihydropyrroles, respectively (the latter via an Alder-ene reaction). The gold nanoparticles were immobilized on thiol-functionalized microcrystalline cellulose and characterized by electron microscopy (HAADF-STEM) and by XPS. The thiol-stabilized gold nanoparticles (Au0) were obtained in the size range 1.5-6 nm at the cellulose surface. The robust and sustainable cellulose-supported gold nanocatalyst can be recycled for multiple cycles without losing activity.
Collapse
Affiliation(s)
- Luca Deiana
- Department
of Natural Sciences, Mid Sweden University, Holmgatan 10, SE-85179 Sundsvall, Sweden
| | - Elham Badali
- Department
of Natural Sciences, Mid Sweden University, Holmgatan 10, SE-85179 Sundsvall, Sweden
| | - Abdolrahim A. Rafi
- Department
of Natural Sciences, Mid Sweden University, Holmgatan 10, SE-85179 Sundsvall, Sweden
| | - Cheuk-Wai Tai
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Jan-E Bäckvall
- Department
of Natural Sciences, Mid Sweden University, Holmgatan 10, SE-85179 Sundsvall, Sweden
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Armando Córdova
- Department
of Natural Sciences, Mid Sweden University, Holmgatan 10, SE-85179 Sundsvall, Sweden
| |
Collapse
|
4
|
Deiana L, Rafi AA, Bäckvall JE, Córdova A. Subtilisin integrated artificial plant cell walls as heterogeneous catalysts for asymmetric synthesis of ( S)-amides. RSC Adv 2023; 13:19975-19980. [PMID: 37404321 PMCID: PMC10316683 DOI: 10.1039/d3ra02193a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/06/2023] Open
Abstract
Subtilisin integrated artificial plant-cell walls (APCWs) were fabricated by self-assembly using cellulose or nanocellulose as the main component. The resulting APCW catalysts are excellent heterogeneous catalysts for the asymmetric synthesis of (S)-amides. This was demonstrated by the APCW-catalyzed kinetic resolution of several racemic primary amines to give the corresponding (S)-amides in high yields with excellent enantioselectivity. The APCW catalyst can be recycled for multiple reaction cycles without loss of enantioselectivity. The assembled APCW catalyst was also able to cooperate with a homogeneous organoruthenium complex, which allowed for the co-catalytic dynamic kinetic resolution (DKR) of a racemic primary amine to give the corresponding (S)-amide in high yield. The APCW/Ru co-catalysis constitutes the first examples of DKR of chiral primary amines when subtilisin is used as a co-catalyst.
Collapse
Affiliation(s)
- Luca Deiana
- Department of Natural Sciences, Mid Sweden University Holmgatan 10 Sundsvall 85179 Sweden
| | - Abdolrahim A Rafi
- Department of Natural Sciences, Mid Sweden University Holmgatan 10 Sundsvall 85179 Sweden
| | - Jan-E Bäckvall
- Department of Natural Sciences, Mid Sweden University Holmgatan 10 Sundsvall 85179 Sweden
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University Stockholm SE-10691 Sweden
| | - Armando Córdova
- Department of Natural Sciences, Mid Sweden University Holmgatan 10 Sundsvall 85179 Sweden
| |
Collapse
|
5
|
Ramesh Naidu V, Rafi AA, Tai CW, Bäckvall JE, Córdova A. Regio- and Stereoselective Carbon-Boron Bond Formation via Heterogeneous Palladium-Catalyzed Hydroboration of Enallenes. Chemistry 2023; 29:e202203950. [PMID: 36719323 DOI: 10.1002/chem.202203950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/30/2023] [Accepted: 01/30/2023] [Indexed: 02/01/2023]
Abstract
A highly efficient regio- and stereoselective heterogeneous palladium-catalyzed hydroboration reaction of enallenes was developed. Nanopalladium immobilized on microcrystalline cellulose (MCC) was successfully employed as an efficient catalyst for the enallene hydroboration reaction. The nanopalladium particles were shown by HAADF-STEM to have an average size of 2.4 nm. The cellulose-supported palladium catalyst exhibits high stability and provides vinyl boron products in good to high isolated yields (up to 90 %). The nanopalladium catalyst can be efficiently recycled and it was demonstrated that the catalyst can be used in 7 runs with a maintained high yield (>80 %). The vinylboron compounds prepared from enallenes are important synthetic intermediates that can be used in various organic synthetic transformations.
Collapse
Affiliation(s)
- Veluru Ramesh Naidu
- Arrhenius Laboratory, Department of Organic University, 10691, Stockholm, Sweden
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| | - Abdolrahim A Rafi
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| | - Cheuk-Wai Tai
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, 10691, Sweden
| | - Jan-E Bäckvall
- Arrhenius Laboratory, Department of Organic University, 10691, Stockholm, Sweden
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| | - Armando Córdova
- Department of Natural Sciences, Mid Sweden University, Holmgatan 10, 85170, Sundsvall, Sweden
| |
Collapse
|
6
|
Mao XR, Wang Q, Zhuo SP, Xu LP. Reactivity and Selectivity of the Diels-Alder Reaction of Anthracene in [Pd 6L 4] 12+ Supramolecular Cages: A Computational Study. Inorg Chem 2023; 62:4330-4340. [PMID: 36863004 DOI: 10.1021/acs.inorgchem.3c00005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
The field of supramolecular metal-organic cage catalysis has grown rapidly in recent years. However, theoretical studies regarding the reaction mechanism and reactivity and selectivity controlling factors for supramolecular catalysis are still underdeveloped. Herein, we demonstrate a detailed density functional theory study on the mechanism, catalytic efficiency, and regioselectivity of the Diels-Alder reaction in bulk solution and within two [Pd6L4]12+ supramolecular cages. Our calculations are consistent with experiments. The origins of the catalytic efficiency of the bowl-shaped cage 1 have been elucidated to be the host-guest stabilization of the transition states and the favorable entropy effect. The reasons for the switch of the regioselectivity from 9,10-addition to 1,4-addition within the octahedral cage 2 were attributed to the confinement effect and the noncovalent interactions. This work would shed light on the understanding of [Pd6L4]12+ metallocage-catalyzed reactions and provide a detailed mechanistic profile otherwise difficult to obtain from experiments. The findings of this study could also aid to the improvement and development of more efficient and selective supramolecular catalysis.
Collapse
Affiliation(s)
- Xin-Rui Mao
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Qian Wang
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Shu-Ping Zhuo
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo 255049, China
| |
Collapse
|
7
|
González-Granda S, Albarrán-Velo J, Lavandera I, Gotor-Fernández V. Expanding the Synthetic Toolbox through Metal-Enzyme Cascade Reactions. Chem Rev 2023; 123:5297-5346. [PMID: 36626572 DOI: 10.1021/acs.chemrev.2c00454] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The combination of metal-, photo-, enzyme-, and/or organocatalysis provides multiple synthetic solutions, especially when the creation of chiral centers is involved. Historically, enzymes and transition metal species have been exploited simultaneously through dynamic kinetic resolutions of racemates. However, more recently, linear cascades have appeared as elegant solutions for the preparation of valuable organic molecules combining multiple bioprocesses and metal-catalyzed transformations. Many advantages are derived from this symbiosis, although there are still bottlenecks to be addressed including the successful coexistence of both catalyst types, the need for compatible reaction media and mild conditions, or the minimization of cross-reactivities. Therefore, solutions are here also provided by means of catalyst coimmobilization, compartmentalization strategies, flow chemistry, etc. A comprehensive review is presented focusing on the period 2015 to early 2022, which has been divided into two main sections that comprise first the use of metals and enzymes as independent catalysts but working in an orchestral or sequential manner, and later their application as bionanohybrid materials through their coimmobilization in adequate supports. Each part has been classified into different subheadings, the first part based on the reaction catalyzed by the metal catalyst, while the development of nonasymmetric or stereoselective processes was considered for the bionanohybrid section.
Collapse
Affiliation(s)
- Sergio González-Granda
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Jesús Albarrán-Velo
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Iván Lavandera
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| | - Vicente Gotor-Fernández
- Organic and Inorganic Chemistry Department, Universidad de Oviedo, 33006 Oviedo, Asturias, Spain
| |
Collapse
|
8
|
Zheng Z, Deiana L, Posevins D, Rafi AA, Zhang K, Johansson MJ, Tai CW, Córdova A, Bäckvall JE. Efficient Heterogeneous Copper-Catalyzed Alder-Ene Reaction of Allenynamides to Pyrrolines. ACS Catal 2022; 12:1791-1796. [PMID: 35154848 PMCID: PMC8822631 DOI: 10.1021/acscatal.1c05147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/11/2022] [Indexed: 12/18/2022]
Abstract
Herein, we describe an efficient nanocopper-catalyzed Alder-ene reaction of allenynamides. The copper nanoparticles were immobilized on amino-functionalized microcrystalline cellulose. A solvent-controlled chemoselectivity of the reaction was observed, leading to the chemodivergent synthesis of pyrrolines (2,5-dihydropyrroles) and pyrroles. The heterogeneous copper catalyst exhibits high efficiency and good recyclability in the Alder-ene reaction, constituting a highly attractive catalytic system from an economical and environmental point of view.
Collapse
Affiliation(s)
- Zhiyao Zheng
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Luca Deiana
- Department
of Natural Sciences, Holmgatan 10, Mid Sweden
University, 85179 Sundsvall, Sweden
| | - Daniels Posevins
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Abdolrahim A. Rafi
- Department
of Natural Sciences, Holmgatan 10, Mid Sweden
University, 85179 Sundsvall, Sweden
| | - Kaiheng Zhang
- Department
of Natural Sciences, Holmgatan 10, Mid Sweden
University, 85179 Sundsvall, Sweden
| | - Magnus J. Johansson
- AstraZeneca
R&D, Innovative Medicines, Cardiovascular
and Metabolic Disorders, Medicinal Chemistry, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Cheuk-Wai Tai
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Armando Córdova
- Department
of Natural Sciences, Holmgatan 10, Mid Sweden
University, 85179 Sundsvall, Sweden
| | - Jan-E. Bäckvall
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
- Department
of Natural Sciences, Holmgatan 10, Mid Sweden
University, 85179 Sundsvall, Sweden
| |
Collapse
|