1
|
Wu T, Castro AJ, Ganguli K, Rotella ME, Ye N, Gallou F, Wu B, Weix DJ. Cross-Electrophile Coupling to Form Sterically Hindered C(sp 2)-C(sp 3) Bonds: Ni and Co Afford Complementary Reactivity. J Am Chem Soc 2025; 147:9449-9456. [PMID: 40052817 PMCID: PMC12005400 DOI: 10.1021/jacs.4c16912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
The formation of sterically hindered C(sp2)-C(sp3) bonds could be a useful synthetic tool but has been understudied in cross-electrophile coupling. Here, we report two methods that couple secondary alkyl bromides with aryl halides that contain sterically hindered C-X bonds: 1) ortho-substituted aryl bromides with nickel catalysts and 2) di-ortho-substituted aryl iodides with cobalt catalysts. Stoichiometric experiments and deuterium labeling studies show that 1) [Co] is better than [Ni] for oxidative addition of di-ortho-substituted Ar-I and 2) [Co] is better than [Ni] for radical capture/reductive elimination steps with di-ortho-substituted arenes. For both metals, Ar-H side products observed in reactions with low-yielding di-ortho-substituted aryl iodides appear to arise from Ar• formation and hydrogen-atom transfer from the solvent. While the origins of the differences in scope are not yet understood, these studies demonstrate a previously unknown complementarity between nickel and cobalt in cross-electrophile coupling.
Collapse
Affiliation(s)
- Tianrui Wu
- Department of Chemistry, UW-Madison, Madison, WI USA 53706
| | | | | | - Madeline E. Rotella
- Department of Chemistry, Roy and Diana Vagelos Laboratories, University of Pennsylvania, Philadelphia, PA USA 19104
| | - Ning Ye
- Chemical & Analytical Development, Suzhou Novartis Technical Development Company Limited, Changshu, Jiangsu 215537, China
| | - Fabrice Gallou
- Chemical & Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland
| | - Bin Wu
- Chemical & Analytical Development, Suzhou Novartis Technical Development Company Limited, Changshu, Jiangsu 215537, China
| | - Daniel J. Weix
- Department of Chemistry, UW-Madison, Madison, WI USA 53706
| |
Collapse
|
2
|
Ehehalt L, Beleh OM, Priest IC, Mouat JM, Olszewski AK, Ahern BN, Cruz AR, Chi BK, Castro AJ, Kang K, Wang J, Weix DJ. Cross-Electrophile Coupling: Principles, Methods, and Applications in Synthesis. Chem Rev 2024; 124:13397-13569. [PMID: 39591522 PMCID: PMC11638928 DOI: 10.1021/acs.chemrev.4c00524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 10/11/2024] [Accepted: 10/16/2024] [Indexed: 11/28/2024]
Abstract
Cross-electrophile coupling (XEC), defined by us as the cross-coupling of two different σ-electrophiles that is driven by catalyst reduction, has seen rapid progression in recent years. As such, this review aims to summarize the field from its beginnings up until mid-2023 and to provide comprehensive coverage on synthetic methods and current state of mechanistic understanding. Chapters are split by type of bond formed, which include C(sp3)-C(sp3), C(sp2)-C(sp2), C(sp2)-C(sp3), and C(sp2)-C(sp) bond formation. Additional chapters include alkene difunctionalization, alkyne difunctionalization, and formation of carbon-heteroatom bonds. Each chapter is generally organized with an initial summary of mechanisms followed by detailed figures and notes on methodological developments and ending with application notes in synthesis. While XEC is becoming an increasingly utilized approach in synthesis, its early stage of development means that optimal catalysts, ligands, additives, and reductants are still in flux. This review has collected data on these and various other aspects of the reactions to capture the state of the field. Finally, the data collected on the papers in this review is offered as Supporting Information for readers.
Collapse
Affiliation(s)
| | | | - Isabella C. Priest
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Julianna M. Mouat
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin N. Ahern
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Alexandro R. Cruz
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Benjamin K. Chi
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Anthony J. Castro
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Kai Kang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Jiang Wang
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin−Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
3
|
Li KR, He XC, Gao J, Liu YL, Chen HB, Xiang HY, Chen K, Yang H. Amine-Borane-Mediated, Nickel/Photoredox-Catalyzed Cross-Electrophile Coupling between Alkyl and Aryl Bromides. J Org Chem 2024; 89:12658-12667. [PMID: 39159404 DOI: 10.1021/acs.joc.4c01605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Nickel/photoredox catalysis has emerged as a powerful platform for exploring nontraditional and challenging cross-couplings. Herein, a metallaphotoredox catalytic protocol has been developed on the basis of a tertiary amine-ligated boryl radical-induced halogen atom transfer process under blue-light irradiation. A wide variety of aryl and heteroaryl bromides featuring different functional groups and pharmaceutical moieties were facilely coupled to rapidly install C(sp3)-enriched aromatic scaffolds. The compatibility of Lewis base-ligated borane with nickel catalysis was well exemplified to extend the chemical space for Ni-catalyzed cross-electrophile coupling.
Collapse
Affiliation(s)
- Ke-Rong Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Xian-Chen He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Jie Gao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yan-Ling Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hong-Bin Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Jiangxi Time Chemical Company, Ltd., Fuzhou 344800, P. R. China
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Xiangjiang Laboratory, Changsha 410205, China
| |
Collapse
|
4
|
Li X, Deng W, Wen Y, Wang Z, Zhou J, Li Z, Li Y, Hu J, Huang Y. Electrochemically Driven para-Selective C(sp 2)-H Alkylation Enabled by Activation of Alkyl Halides without Sacrificial Anodes. Chemistry 2024; 30:e202400010. [PMID: 38389032 DOI: 10.1002/chem.202400010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/04/2024] [Accepted: 02/22/2024] [Indexed: 02/24/2024]
Abstract
With alkyl halides (I, Br, Cl) as a coupling partner, an electrochemically driven strategy for para-selective C(sp2)-H alkylation of electron-deficient arenes (aryl esters, aldehydes, nitriles, and ketones) has been achieved to access diverse alkylated arenes in one step. The reaction enables the activation of alkyl halides in the absence of sacrificial anodes, achieving the formation of C(sp2)-C(sp3) bonds under mild electrolytic conditions. The utility of this protocol is reflected in high site selectivity, broad substrate scope, and scalable.
Collapse
Affiliation(s)
- Xinling Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Weijie Deng
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Yating Wen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Ziliang Wang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Jianfeng Zhou
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Zhenjie Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Yibiao Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Jinhui Hu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| | - Yubing Huang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, 529090, P. R. China
| |
Collapse
|
5
|
Wu B, Ye N, Zhao K, Shi M, Liao J, Zhang J, Chen W, Li X, Han Y, Cortes-Clerget M, Regnier ML, Parmentier M, Mathes C, Rampf F, Gallou F. Implementation of micelle-enabled C(sp 2)-C(sp 3) cross-electrophile coupling in pharmaceutical synthesis. Chem Commun (Camb) 2024; 60:2349-2352. [PMID: 38284323 DOI: 10.1039/d3cc05916b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
A sustainable C(sp2)-C(sp3) cross-electrophile coupling was developed between readily available 5-bromophthalide and 1-benzyl-4-iodopiperidine under micellar conditions, leading to a key intermediate of one of our development compounds. Copper was found to play a crucial role as a co-catalyst in this dual catalysis system. The chemistry and process were successfully demonstrated in a kilo scale to deliver sufficient drug substance to the clinical campaigns. This is the first reported scale-up of such a challenging cross-electrophilic coupling that uses an aqueous medium, and not undesirable reprotoxic polar aprotic solvents (e.g. DMF, DMAc, and NMP).
Collapse
Affiliation(s)
- Bin Wu
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Ning Ye
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Kangming Zhao
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Min Shi
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Jiayu Liao
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Jing Zhang
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Wei Chen
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Xianzhong Li
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | - Yufeng Han
- Chemical & Analytical Development, Suzhou Novartis Technical Development Co., Ltd, Changshu, Jiangsu 215537, China.
| | | | | | - Michael Parmentier
- Chemical & Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland.
| | - Christian Mathes
- Chemical & Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland.
| | - Florian Rampf
- Chemical & Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland.
| | - Fabrice Gallou
- Chemical & Analytical Development, Novartis Pharma AG, 4056 Basel, Switzerland.
| |
Collapse
|
6
|
Hedouin G, Ogulu D, Kaur G, Handa S. Aqueous micellar technology: an alternative beyond organic solvents. Chem Commun (Camb) 2023; 59:2842-2853. [PMID: 36753294 DOI: 10.1039/d3cc00127j] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Solvents are the major source of chemical waste from synthetic chemistry labs. Growing attention to more environmentally friendly sustainable processes demands novel technologies to substitute toxic or hazardous solvents. If not always, sometimes, water can be a suitable substitute for organic solvents, if used appropriately. However, the sole use of water as a solvent remains non-practical due to its incompatibility with organic reagents. Nonetheless, over the past few years, new additives have been disclosed to achieve chemistry in water that also include aqueous micelles as nanoreactors. Although one cannot claim micellar catalysis to be a greener technology for every single transformation, it remains the sustainable or greener alternative for many reactions. Literature precedents support that micellar technology has much more potential than just as a reaction medium, i.e., the role of the amphiphile as a ligand obviating phosphine ligands in catalysis, the shielding effect of micelles to protect water-sensitive reaction intermediates in catalysis, and the compartmentalization effect. While compiling the powerful impact of micellar catalysis, this article highlights two diverse recent technologies: (i) the design and employment of the surfactant PS-750-M in selective catalysis; (ii) the use of the semisynthetic HPMC polymer to enable ultrafast reactions in water.
Collapse
Affiliation(s)
- Gaspard Hedouin
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | - Deborah Ogulu
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | - Gaganpreet Kaur
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| | - Sachin Handa
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, USA.
| |
Collapse
|
7
|
Manna K, Jana R. Palladium-Catalyzed Cross-Electrophile Coupling between Aryl Diazonium Salt and Aryl Iodide/Diaryliodonium Salt in H 2O-EtOH. Org Lett 2023; 25:341-346. [PMID: 36607149 DOI: 10.1021/acs.orglett.2c03932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
We report herein a mild highly chemoselective palladium-catalyzed cross-electrophile coupling between readily accessible aromatic diazonium salt and aryl iodide or diaryliodonium salt in water-ethanol (2:1) medium. Mechanistic studies revealed that ethanol is crucial to generate an active Pd(0) catalyst, and the counterion of the diazonium salt renders a cationic Pd(II) species that facilitates subsequent oxidative addition to aryl iodide/diaryliodonium salt. Silver(I) salt was crucial to retain the catalytic activity of palladium, removing the iodide ion as a precipitate.
Collapse
Affiliation(s)
- Kartic Manna
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Ranjan Jana
- Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology, 4 Raja S. C. Mullick Road, Jadavpur, Kolkata, 700032, West Bengal, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| |
Collapse
|
8
|
Hu Y, Wong MJ, Lipshutz BH. ppm Pd‐Containing Nanoparticles as Catalysts for Negishi Couplings …
in Water. Angew Chem Int Ed Engl 2022; 61:e202209784. [DOI: 10.1002/anie.202209784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Yuting Hu
- Department of Chemistry & Biochemistry University of California Santa Barbara CA 93106 USA
| | - Madison J. Wong
- Department of Chemistry & Biochemistry University of California Santa Barbara CA 93106 USA
| | - Bruce H. Lipshutz
- Department of Chemistry & Biochemistry University of California Santa Barbara CA 93106 USA
| |
Collapse
|
9
|
Hu Y, Wong MJ, Lipshutz BH. ppm Pd‐Containing Nanoparticles as Catalysts for Negishi Couplings… in Water. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202209784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuting Hu
- University of California Santa Barbara Chemistry & Biochemistry UNITED STATES
| | - Madison J Wong
- University of California, Santa Barbara Chemistry & Biochemistry UNITED STATES
| | - Bruce Howard Lipshutz
- University of California Department of Chemistry University of California 93106 Santa Barbara UNITED STATES
| |
Collapse
|
10
|
Yedase GS, Jha AK, Yatham VR. Visible-Light Enabled C(s p3)-C(s p2) Cross-Electrophile Coupling via Synergistic Halogen-Atom Transfer (XAT) and Nickel Catalysis. J Org Chem 2022; 87:5442-5450. [PMID: 35357838 DOI: 10.1021/acs.joc.2c00251] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
We herein report the first visible-light-mediated cross-coupling of unactivated alkyl iodides with aryl bromides through synergistic halogen atom transfer (XAT) and nickel catalysis. This simple protocol operates under mild reaction conditions and tolerates a variety of functional groups affording C(sp3)-C(sp2) cross-coupling products in good to moderate yields.
Collapse
Affiliation(s)
- Girish Suresh Yedase
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Avishek Kumar Jha
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|