1
|
Meng H, Xu R, Xu K, Leng D, Liu L, Ju H, Liu X, Wei Q. A photoelectrochemical aptasensing platform assembled at the heterojunction interface of Cu 3BiS 3 sensitized CuV 2O 6 for bisphenol A. Mikrochim Acta 2024; 191:89. [PMID: 38206415 DOI: 10.1007/s00604-023-06144-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/06/2023] [Indexed: 01/12/2024]
Abstract
The interaction between the sensitive interfaces of photoelectrochemical (PEC) semiconductor nanomaterials and microscopic matter creates endless potential for the efficient detection of endocrine disruptor. This work presents the development of a high-efficiency PEC aptasensor for bisphenol A (BPA) monitoring based on Cu3BiS3 sensitized CuV2O6 nanocomposites with exceptional visible-light PEC activity. We implemented the integration of Cu3BiS3 nanosheet photosensitizer to sensitize the CuV2O6 nanowire structure that was synthesized utilizing a facile hydrothermal approach. The band gap alignment between Cu3BiS3 and CuV2O6 facilitated enduring PEC response yielding an efficient interfacial structure. The surface of the CuV2O6/Cu3BiS3 electrode was modified with BPA aptamer, enabling specific binding with BPA and precise quantification of its content. The developed aptamer sensors possess a wide detection range of 5.00 × 10-1 to 5.00 × 104 ng/mL, and a low detection limit of 1.60 × 10-1 ng/mL (at S/N = 3). After undergoing 20 testing cycles and enduring long-term storage, the sensor maintained its stability and showcased excellent repeatability and reproducibility. This study presents a promising methodology for the detection of BPA in environmental settings.
Collapse
Affiliation(s)
- Han Meng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Rui Xu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Kun Xu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Dongquan Leng
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Lei Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Huangxian Ju
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Xuejing Liu
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Qin Wei
- Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
2
|
Lin J, Liu G, Qiu Z, Huang L, Weng S. Etching reaction of carbon quantum dot-functionalized MnO 2 nanosheets with an enzymatic product for photoelectrochemical immunoassay of alpha-fetoprotein. NEW J CHEM 2022. [DOI: 10.1039/d2nj01954j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An etching reaction-based photoelectrochemical (PEC) immunoassay was developed to monitor alpha-fetoprotein (AFP) by coupling with the enzymatic product toward the dissolution of MnO2 nanosheets.
Collapse
Affiliation(s)
- Junshan Lin
- Department of Pediatric Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Guozhong Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Zhixin Qiu
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Lihong Huang
- The First Clinical Medical College of Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Shangeng Weng
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350004, China
| |
Collapse
|