1
|
Yu L, He Y, Zhou G, Hu L, Wang M. Few-layered boron nitride nanosheet as a non-metallic phosphatase nanozyme and its application in human urine phosphorus detection. Anal Bioanal Chem 2024; 416:5993-5999. [PMID: 37962608 DOI: 10.1007/s00216-023-05030-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023]
Abstract
Human urine phosphorus (existing in the form of phosphate) is a biomarker for the diagnosis of several diseases such as kidney disease, hyperthyroidism, and rickets. Therefore, the selective detection of phosphate in urine samples is crucial in the field of clinical diagnosis. Herein, we reported the phosphatase-like catalytic activity of few-layered h-BNNS for the first time. As the phosphatase-like activity of few-layered h-BNNS could be effectively inhibited by phosphate, a selective fluorescent method for the detection of phosphate was proposed. The linear range for phosphate detection is 0.5-10 µM with a detection limit of 0.33 µM. The fluorescent method was then explored for the detection of human urine phosphorus in real samples. The results obtained by the proposed method were consistent with those of the traditional method, indicating that the present method has potential application for urine phosphorus detection in clinical disease diagnosis.
Collapse
Affiliation(s)
- Linlin Yu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| | - Yuting He
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| | - Guofen Zhou
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China
| | - Lianzhe Hu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing, 401331, China.
| | - Min Wang
- School of Pharmaceutical Sciences, Chongqing University, Chongqing, 401331, China.
| |
Collapse
|
2
|
Verma AK, Sharma BB. Modulating the Water Contact Angle Using Surface Roughness: Interfacial Properties of Hexagonal Boron Nitride Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16058-16068. [PMID: 39056521 DOI: 10.1021/acs.langmuir.4c00870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Hexagonal boron nitride (hBN) exhibits immense potential in H2O-related technologies, but its interaction with H2O, especially on rough surfaces, remains unclear. This study unravels the influence of surface roughness and force field selection on hBN wettability using molecular dynamics (MD) simulations. We leverage quantum mechanical calculations to accurately capture the hBN surface charge distribution and combine it with free energy calculations via MD simulations for the hBN-H2O interfaces. Incorporating surface roughness into the model yields results in close agreement with the experimental contact angle of 66° for H2O using FF-3 force fields, validating the simulation approach. However, this approach can yield an unrealistic water contact angle (WCA) of 0° for FF-2 force fields, highlighting the crucial role of force field selection and realistic surface representations. We further dissect the impact of roughness on the WCA, identifying the individual contributions of electrostatic and Lennard-Jones interactions to the work of adhesion. This research investigates the combined impact of surface roughness and force fields on interfacial properties, providing new possibilities for the advancement and optimization of desalination.
Collapse
Affiliation(s)
- Ashutosh Kumar Verma
- School of Chemical Engineering, Oklahoma State University, Stillwater, Oklahoma 74078, United States
| | | |
Collapse
|
3
|
Lin S, Zhang X, Tian A, Wang P, Li Y, Shi C, Ma C, Fan Y. Boron nitride nanoplate-based strand exchange amplification with enhanced sensitivity and rapidity for quantitative detection of Staphylococcus aureus in food samples. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:892-898. [PMID: 38247331 DOI: 10.1039/d3ay02076b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Staphylococcus aureus is one of the most common foodborne pathogens that can cause serious food poisoning and infectious diseases in humans. Standard identification approaches include nucleic acid amplification, but current amplification tools suffer from low amplification efficiency, resulting in the risk of low sensitivity and long detection time. Herein, boron nitride nanoplates (BNNPs) were chosen as an additive for enhancing the sensitivity and rapidity of strand exchange amplification (SEA), thereby successfully expanding the application of nucleic acid detection for detecting Staphylococcus aureus in food samples. As a result, SEA based on boron nitride nanoplates (BNNP-SEA) was employed for sensitive and rapid detection of foodborne pathogen Staphylococcus aureus. Compared with classical SEA, the BNNP-based SEA assay was more than 10-fold sensitive, and the detection time was reduced by 15 minutes. The optimized BNNP-based SEA shows a wide linear range from 40 pg to 50 ng in a diluted solution of the target DNA with a low detection limit of 40 pg. Moreover, the BNNP-based SEA achieves the quantitative detection of Staphylococcus aureus in different food samples (pork, beef, mutton, duck, milk and shrimp). In contrast to the classical SEA, the BNNP-based SEA method enabled sensitive and rapid detection of Staphylococcus aureus in the above food samples at concentrations as low as 5 × 103 CFU mL-1. The BNNP-based SEA assay is specific, sensitive and reliable, offering a valuable diagnostic technology for routine analysis in food safety research.
Collapse
Affiliation(s)
- Shuo Lin
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Xin Zhang
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Anning Tian
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Pengyu Wang
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of the Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Yaofang Fan
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
4
|
Feng Z, Lei Z, Yao Y, Liu J, Wu B, Ouyang W. Anisotropic Interfacial Force Field for Interfaces of Water with Hexagonal Boron Nitride. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:18198-18207. [PMID: 38063463 DOI: 10.1021/acs.langmuir.3c01612] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
This study introduces an anisotropic interfacial potential that provides an accurate description of the van der Waals (vdW) interactions between water and hexagonal boron nitride (h-BN) at their interface. Benchmarked against the strongly constrained and appropriately normed functional, the developed force field demonstrates remarkable consistency with reference data sets, including binding energy curves and sliding potential energy surfaces for various configurations involving a water molecule adsorbed atop the h-BN surface. These findings highlight the significant improvement achieved by the developed force field in empirically describing the anisotropic vdW interactions of the water/h-BN heterointerfaces. Utilizing this anisotropic force field, molecular dynamics simulations demonstrate that atomically flat, pristine h-BN exhibits inherent hydrophobicity. However, when atomic-step surface roughness is introduced, the wettability of h-BN undergoes a significant change, leading to a hydrophilic nature. The calculated water contact angle (WCA) for the roughened h-BN surface is approximately 64°, which closely aligns with experimental WCA values ranging from 52° to 67°. These findings indicate the high probability of the presence of atomic steps on the surfaces of the experimental h-BN samples, emphasizing the need for further experimental verification. The development of the anisotropic interfacial force field for accurately describing interactions at the water/h-BN heterointerfaces is a significant advancement in accurately simulating the wettability of two-dimensional (2D) materials, offering a reliable tool for studying the dynamic and transport properties of water at these interfaces, with implications for materials science and nanotechnology.
Collapse
Affiliation(s)
- Zhicheng Feng
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Zhangke Lei
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Yuanpeng Yao
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Jianxin Liu
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Bozhao Wu
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Wengen Ouyang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
- State Key Laboratory of Water Resources & Hydropower Engineering Science, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
5
|
Li Y, Lin S, Xue Y, Jia Q, Wang Y, Xie Y, Shi C, Ma C. Boron nitride nanoplate-based improvement of the specificity and sensitivity in loop-mediated isothermal amplification for Vibrio parahaemolyticus detection. Anal Chim Acta 2023; 1280:341851. [PMID: 37858548 DOI: 10.1016/j.aca.2023.341851] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/24/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023]
Abstract
BACKGROUND Nucleic acid testing based on DNA amplification is gradually entering people's modern life for clinical diagnosis, food safety monitoring and infectious disease prevention. Polymerase chain reaction (PCR) and loop-mediated isothermal amplification (LAMP) are the most powerful techniques that have been the gold standard for quantitative nucleic acid analysis. However, the high nonspecific amplification rate caused by the formation of primer dimers, hairpin structures and mismatched hybridization severely restricts their real-world applications. It is highly desirable to explore a way for improving the specificity and sensitivity of PCR and LAMP assays. RESULTS In this work, we demonstrated that a nanomaterial boron nitride nanoplate (BNNP), due to its unique surface properties, can interact with the main components of the amplification reaction, such as single stranded primers and Bst DNA polymerase, and increase the thermal conductivity of the solution. As a result, the presence of BNNPs dramatically improved the specificity of PCR and LAMP. And BNNPs maintained the specificity even after five rounds of PCR. Moreover, the sensitivity of LAMP was also enhanced by BNNPs, and the detection limit of BNNP-based LAMP was two orders of magnitude lower than that of classical LAMP. Then the BNNP-based LAMP was applied to detect Vibrio parahaemolyticus in contaminated seafood samples with high specificity and a 10-fold increase in sensitivity. SIGNIFICANCE This is the first systematic demonstration of BNNPs as a promising additive to enhance the efficiency and fidelity of PCR and LAMP amplification reactions, thereby greatly expanding the application of nucleic acid detection in a wide range of laboratory and clinical settings.
Collapse
Affiliation(s)
- Yong Li
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 266042, Qingdao, China
| | - Shuo Lin
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 266042, Qingdao, China
| | - Yuxin Xue
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 266042, Qingdao, China
| | - Qianyue Jia
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 266042, Qingdao, China
| | - Ye Wang
- Clinical Laboratory, Qingdao Central Hospital, The Second Affiliated Hospital of Medical College of Qingdao University, 266042, Qingdao, China
| | - Yingqiu Xie
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Astana, Kazakhstan
| | - Chao Shi
- Qingdao Nucleic Acid Rapid Testing International Science and Technology Cooperation Base, College of Life Sciences, Department of Pathogenic Biology, School of Basic Medicine, Department of the Clinical Laboratory, The Affiliated Hospital of Qingdao University, Qingdao University, 266071, Qingdao, China
| | - Cuiping Ma
- Shandong Provincial Key Laboratory of Biochemical Engineering, Qingdao Nucleic Acid Rapid Detection Engineering Research Center, Qingdao Key Laboratory of Nucleic Acid Rapid Detection, Sino-UAE International Cooperative Joint Laboratory of Pathogenic Microorganism Rapid Detection, College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, 266042, Qingdao, China.
| |
Collapse
|
6
|
Emerging two-dimensional metallenes: Recent advances in structural regulations and electrocatalytic applications. CHINESE JOURNAL OF CATALYSIS 2022. [DOI: 10.1016/s1872-2067(21)64022-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
7
|
Kaviani S, Tayurskii DA, Nedopekin OV, Piyanzina I. DFT insight into Cd2+, Hg2+, Pb2+, Sn2+, As3+, Sb3+, and Cr3+ heavy metal ions adsorption onto surface of bowl-like B30 nanosheet. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
8
|
Programmable, Universal DNAzyme Amplifier Supporting Pancreatic Cancer-Related miRNAs Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The abnormal expression of miRNA is closely related to the occurrence of pancreatic cancer. Herein, a programmable DNAzyme amplifier for the universal detection of pancreatic cancer-related miRNAs was proposed based on its programmability through the rational design of sequences. The fluorescence signal recovery of the DNAzyme amplifier showed a good linear relationship with the concentration of miR-10b in the range of 10–60 nM, with a detection limit of 893 pM. At the same time, this method displayed a high selectivity for miR-10b, with a remarkable discrimination of a single nucleotide difference. Furthermore, this method was also successfully used to detect miR-21 in the range of 10–60 nM based on the programmability of the DNA amplifier, exhibiting the universal application feasibility of this design. Overall, the proposed programmable DNAzyme cycle amplifier strategy shows promising potential for the simple, rapid, and universal detection of pancreatic cancer-related miRNAs, which is significant for improving the accuracy of pancreatic cancer diagnosis.
Collapse
|
9
|
Chen M, Song Z, Yang X, Song Z, Luo X. Antifouling peptides combined with recognizing DNA probes for ultralow fouling electrochemical detection of cancer biomarkers in human bodily fluids. Biosens Bioelectron 2022; 206:114162. [PMID: 35272212 DOI: 10.1016/j.bios.2022.114162] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/21/2022]
Abstract
Herein, a universal strategy for the construction of highly sensitive and low fouling biosensors was proposed based on antifouling peptides conjugated with recognizing DNA probes. The peptide-DNA conjugate was formed through a reagent-free click reaction between a typical DNA aptamer modified with 5'-dibenzocyclooctyne (DBCO) and the designed antifouling peptide terminated with biotin and the azide group at its two ends. With the assistance of streptavidin (SA), the electrochemical biosensor was constructed via immobilization of the straight peptides and peptide-DNA conjugates in sequence onto the electrode surface modified with electrodeposited poly(3,4-ethylenedioxythiophene) (PEDOT) and gold nanoparticles (AuNPs). The prepared biosensor exhibited excellent antifouling performances in various human bodily fluids such as serum, sweat and urine, with a wide linear response range for CA125 from 0.01 U mL-1 to 1000 U mL-1, and a low limit of detection of 0.003 U mL-1. Combining the advantages of the antifouling peptide and recognizing DNA probe, this sensing strategy was capable of assaying CA125 in undiluted human serum, and it also offered a highly promising way for the development of different antifouling biosensors through the conjugation of antifouling peptides with various DNA probes.
Collapse
Affiliation(s)
- Min Chen
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Zhen Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Xiqin Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Zhiling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
10
|
Jiang X, Zeng H, Duan C, Hu Q, Wu Q, Yu Y, Yang X. One-pot synthesis of stable and functional hydrophilic CsPbBr 3 perovskite quantum dots for "turn-on" fluorescence detection of Mycobacterium tuberculosis. Dalton Trans 2022; 51:3581-3589. [PMID: 35147147 DOI: 10.1039/d1dt03624f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
All-inorganic CsPbBr3 perovskite quantum dots (QDs) are widely studied owing to their excellent optoelectronic properties; however, they are usually hydrophobic and unstable in water and thus their biomedical applications are seriously limited. In this study, stable and hydrophilic CsPbBr3 QDs functionalized with carboxyl groups (CsPbBr3-COOH QDs) were prepared in one-pot with the aid of new ligands amino-poly(ethylene glycol)-carboxyl and perfluorooctyltriethoxylsilane. The aqueous solution of CsPbBr3-COOH QDs maintained the initial fluorescence intensity after 8 days of storage; the free carboxyl groups on the surface of CsPbBr3-COOH QDs were covalently conjugated with amino-terminal DNA to construct CsPbBr3 QDs-DNA probes for subsequent application. Then, a biosensing platform utilizing fluorescence resonance energy transfer between hydrophilic CsPbBr3 QDs-DNA and MoS2 nanosheets was developed for the sensitive and selective detection of the Mycobacterium tuberculosis DNA with a low limit of detection of 51.9 pM and the identification of drug-resistant clinical strains. This study advances the preparation of hydrophilic carboxyl-functionalized CsPbBr3 QDs with enhanced stability and extends their application in biomolecule detection.
Collapse
Affiliation(s)
- Xue Jiang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Hongwei Zeng
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Changyuan Duan
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Qianfang Hu
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital, Chongqing Medical University, Chongqing 400042, China
| | - Qiaomin Wu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Yang Yu
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| | - Xiaolan Yang
- Key Laboratory of Laboratory Medical Diagnostics, Ministry of Education, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
11
|
Dual-labeling ratiometric electrochemical strategy initiated with ISDPR for accurate screening MecA gene. Biosens Bioelectron 2022; 197:113772. [PMID: 34768067 DOI: 10.1016/j.bios.2021.113772] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/30/2022]
Abstract
An outstanding dual-labeling ratiometric electrochemical biosensor based on isothermal strand displacement polymerization reaction (ISDPR) for highly sensitive and selective detection of mecA gene has been proposed. Concretely, in the presence of mecA gene, the addition of methylene blue (MB)-labeled primer and polymerase induced recycling amplification to change the structure of the ferrocene (Fc)-labeled hairpin probe, thereby releasing abundant target gene to realize the signal amplification and dual-signal output. Through this process, the electrochemical responses of Fc (IFc) and MB (IMB) were both substantially reduced and increased proportionally, ensuring that the value of IMB/IFc can accurately reflect the true detection level of mecA gene. Benefiting from the "signal-on/off" strategy, the fabricated biosensor exhibited outstanding sequence specificity to discriminate mismatched mecA gene, which verified to be 2.72 times that of single-label detection for perfect match/single base mismatch (PM/MM) discrimination ratio. This strategy effectively integrated the advantages of signal amplification and ratiometric modes, making the biosensor exhibit a broad working range with 10 fM - 3000 pM and a limit of detection (LOD) with 3.33 fM (S/N = 3). Moreover, the proposed biosensor has good feasibility for mecA gene determination in water samples due to acceptable recoveries (95-115%) and repeatability relative standard deviations (RSD) value of 4%. This will provide a powerful sensing platform for improving accuracy and decreasing background signal of sensor for ARGs screening in environmental monitoring.
Collapse
|
12
|
Zhang J, Low ZX, Shao Y, Jiang H, Chen R. Two-dimensional N-doped Pd/carbon for highly efficient heterogeneous catalysis. Chem Commun (Camb) 2022; 58:1422-1425. [PMID: 35001097 DOI: 10.1039/d1cc06427d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel two-dimensional ZIF-derived Pd@CN material prepared via one-step calcination exhibits outstanding catalytic activity in heterogeneous hydrogenation. Its well-developed porous structure, low dimensions and low density make active sites more accessible. This facile and effective strategy can guide the synthesis of highly active and durable Pd@CN catalysts with specific morphologies.
Collapse
Affiliation(s)
- Jiuxuan Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, People's Republic of China.
| | - Ze-Xian Low
- Department of Chemical Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Yanhua Shao
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, People's Republic of China.
| | - Hong Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, People's Republic of China.
| | - Rizhi Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, Jiangsu, People's Republic of China.
| |
Collapse
|
13
|
Kaviani S, Izadyar M. ZIF-8 metal-organic framework conjugated to pristine and doped B12N12 nanoclusters as a new hybrid nanomaterial for detection of amphetamine. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
14
|
Bhai S, Ganguly B. Exploiting the optical sensing of fluorophore-tagged DNA nucleobases on hexagonal BN and Al-doped BN sheets: a computational study. Phys Chem Chem Phys 2021; 24:829-841. [PMID: 34928284 DOI: 10.1039/d1cp04009j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hexagonal boron nitride (h-BN) sheets possess high fluorescence quenching ability and high affinity towards DNA/RNA, and they can be used as a sensing platform for rapid detection. We report the absorption and emission properties of DNA nucleobases such as adenine (A), cytosine (C), guanine (G), and thymine (T) tagged with benzoxazole on h-BN and aluminium-doped h-BN (Al_hBN) sheets. The binding affinity of studied nucleobases on h-BN sheets at the M062X/6-31G* level of theory showed the following adsorption trend: G ≥ T ≥ A > C, which is in good agreement with the previous results. The calculated stability trend of nucleobases on the Al_hBN sheet follows as C > G > A > T at the same level of theory. The physically adsorbed behavior of nucleobases to h-BN sheets was confirmed by the non-covalent interactions (NCIs) and the total density of states (TDOS) plots. The NCI results indicated that van der Waals interactions contribute significantly to the adsorption of nucleobases on h-BN sheets. Atoms in molecules (AIM) calculations revealed the electrostatic interactions between nucleobases and the Al_hBN sheet. The quenching phenomenon of nucleobase-tagged fluorophores on h-BN and Al_hBN sheets was investigated by TD-DFT calculations using the same level of theory. The thymine-tagged fluorophore upon adsorption to the pristine h-BN sheet was found to be blue-shifted (∼43 nm); however, the guanine-tagged fluorophore with Al_hBN showed a remarkable difference from other nucleobase-tagged fluorophores in the absorption and emission spectrum. Guanine-tagged fluorophores showed a smaller blue shift (∼7 nm) in the absorption spectrum; however, it showed a larger red shift (∼55 nm) than the other nucleobase-tagged fluorophores on Al_hBN sheets and can be useful in recognizing a sequence-specific phenomenon as a fluorescent biosensor of DNA and RNA to ascertain the presence of such nucleobases.
Collapse
Affiliation(s)
- Surjit Bhai
- Computational and Simulation Unit (Analytical and Environment Science Division and Centralized Instrument Facility) CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364002, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.,CSIR-CSMCRI, Bhavnagar-364002, Gujarat, India
| | - Bishwajit Ganguly
- Computational and Simulation Unit (Analytical and Environment Science Division and Centralized Instrument Facility) CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, Gujarat, 364002, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.,CSIR-CSMCRI, Bhavnagar-364002, Gujarat, India
| |
Collapse
|
15
|
Intrinsically conductive polymers hybrid bilayer films for the fluorescence molecular diagnosis of the Zika virus. Colloids Surf B Biointerfaces 2021; 208:112120. [PMID: 34597940 DOI: 10.1016/j.colsurfb.2021.112120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022]
Abstract
In 2016, the Zika virus (ZIKV) infection became a major public health problem, after the discovery that an alarming increase in the number of Brazilian newborns with microcephaly could be associated with the occurrence of this viral disease during the pregnancy of their mothers. The urgent need for simple diagnostic methods that allow rapid screening of suspected cases has stimulated the search for low-cost devices capable of detecting specific sequences of nucleic acids. The present work describes the development of nanostructured films formed by bilayers of conjugated polymers for rapid detection of the presence of Zika virus DNA, via fluorescence methods. For this, we initially deposited alternating layers of polyaniline (PANI) and polypyrrole (PPY) on the surface of polyethylene terephthalate (PET) sheets. The films obtained were then characterized by SEM, UV-Vis, ATR-FTIR, and contact angle measurements. For their use as quenchers for the diagnosis of Zika, a single DNA strand-specific for ZIKV was labeled with a fluorophore (FAM-ssDNA). We determined the time required for the saturation of the interaction between probe FAM-ssDNA and the film (180 min) and the time for the maximal hybridization between FAM-ssDNA and target DNA to occur (60 min). The detection limits were estimated as 345 pM and 278 pM for the PET/PPY-PANI and PET/PANI-PPY hybrid films, respectively. The simplicity of the procedure, coupled with the fact that a positive/negative response can be obtained in less than 60 min, suggests that the proposal of using these polymeric bilayer films is a promising methodology for the development of rapid molecular diagnostic tests.
Collapse
|