1
|
Belyakova YY, Radulov PS, Novikov RA, Prolomov IV, Krivoshchapov NV, Medvedev MG, Yaremenko IA, Alabugin IV, Terent'ev AO. FeCl 2-Mediated Rearrangement of Aminoperoxides into Functionalized Tetrahydrofurans: Dynamic Non-innocence of O-Ligands at an Fe Center Coordinates a Radical Cascade. J Am Chem Soc 2025; 147:965-977. [PMID: 39727309 DOI: 10.1021/jacs.4c14062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
The selective reaction of cyclic aminoperoxides with FeCl2 proceeds through a sequence of O-O and C-C bond cleavages, followed by intramolecular cyclization, yielding functionalized tetrahydrofurans in 44-82% yields. Replacing the peroxyacetal group in the peroxide structure with a peroxyaminal fragment fundamentally alters the reaction pathway. Instead of producing linear functionalized ketones, this modification leads to the formation of hard-to-access substituted tetrahydrofurans. Although the aminoperoxide cores undergo multiple bond scissions, this cascade is atom-economical. Computational analysis shows that the O-ligands at the Fe center have enough radical character to promote C-C bond fragmentation and subsequent cyclization. The stereoelectronic flexibility of oxygen, combined with iron's capacity to stabilize multiple reactive intermediates during the multistep cascade, explains the efficiency of this new atom-economic peroxide rearrangement.
Collapse
Affiliation(s)
- Yulia Yu Belyakova
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Peter S Radulov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Roman A Novikov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Ilya V Prolomov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
- Mendeleev University of Chemical Technology, Miusskaya Sq. 9, Moscow 125047, Russian Federation
| | - Nikolai V Krivoshchapov
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Michael G Medvedev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
- National Research University Higher School of Economics, Moscow 101000, Russian Federation
| | - Ivan A Yaremenko
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| | - Igor V Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Florida 32306, United States
| | - Alexander O Terent'ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky prosp., Moscow 119991, Russian Federation
| |
Collapse
|
2
|
Hanazawa N, Kuriyama M, Yamamoto K, Onomura O. Synthesis of ω-Chloroalkyl Aryl Ketones via C-C Bond Cleavage of tert-Cycloalkanols with Tetramethylammonium Hypochlorite. Molecules 2024; 29:1874. [PMID: 38675694 PMCID: PMC11055113 DOI: 10.3390/molecules29081874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/28/2024] Open
Abstract
An oxidative C-C bond cleavage of tert-cycloalkanols with tetramethylammonium hypochlorite (TMAOCl) has been developed. TMAOCl is easy to prepare from tetramethylammonium hydroxide, and the combination of TMAOCl and AcOH effectively promoted the C-C bond cleavage in a two-phase system without additional phase-transfer reagents. Unstrained tert-cycloalkanols were transformed into ω-chloroalkyl aryl ketones in moderate to excellent yields under metal-free and mild reaction conditions.
Collapse
Affiliation(s)
| | | | | | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan (M.K.); (K.Y.)
| |
Collapse
|
3
|
Zong Y, Zou X, Song J, Chen GQ, Zhang X. Chemoselective and Divergent Synthesis of Chlorohydrins and Oxaheterocycles via Ir-Catalyzed Asymmetric Hydrogenation. Org Lett 2023; 25:6875-6880. [PMID: 37697226 DOI: 10.1021/acs.orglett.3c02565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Chlorohydrins and oxaheterocycles are synthetically valuable building blocks for diverse natural products and therapeutic substances. A highly efficient Ir/f-phamidol-catalyzed asymmetric hydrogenation of ω-chloroketones was successfully developed, and various chlorohydrins and oxaheterocycles were obtained divergently with excellent yields and enantioselectivities (up to >99% yield and >99% ee). Synthetic utilities of this divergent transformation were demonstrated by gram-scale synthesis of key intermediates of several enantiomerically enriched drugs via this catalytic methodology.
Collapse
Affiliation(s)
- Yan Zong
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Xiaomei Zou
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Jingyuan Song
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Gen-Qiang Chen
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| | - Xumu Zhang
- Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Department of Chemistry, and Medi-Pingshan, Southern University of Science and Technology, Shenzhen 518000, People's Republic of China
| |
Collapse
|
4
|
Zhang TY, Wu Y, Liu S, Tao JQ, Yang X, Wang XQ, Duan XH, Guo LN. Iron-Catalyzed Alkoxyl Radical-Induced C-C Bond Cleavage/ gem-Difluoroalkylation Cascade. Org Lett 2023. [PMID: 37262417 DOI: 10.1021/acs.orglett.3c01427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
An inexpensive iron-catalyzed alkoxyl radical-induced C-C bond cleavage/gem-difluoroalkylation cascade is presented. Regulated by the structure of alkoxyl radical precursors, fluorinated distal diketones were synthesized through a ring-opening strategy and difluoroalkylated medium-sized lactones and macrolactones were constructed via a ring-expansion strategy. Both protocols proceeded under mild and redox neutral conditions with a broad substrate scope and good functional group compatibility.
Collapse
Affiliation(s)
- Tian-Yu Zhang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yong Wu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Shuai Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Jing-Qi Tao
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xu Yang
- School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xue-Qi Wang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
- School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
5
|
Liu S, Ma P, Zhang L, Shen S, Miao HJ, Liu L, Houk KN, Duan XH, Guo LN. A cheap metal catalyzed ring expansion/cross-coupling cascade: a new route to functionalized medium-sized and macrolactones. Chem Sci 2023; 14:5220-5225. [PMID: 37206389 PMCID: PMC10189895 DOI: 10.1039/d2sc06157k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 04/15/2023] [Indexed: 05/21/2023] Open
Abstract
An efficient alkoxyl radical-triggered ring expansion/cross-coupling cascade was developed under cheap metal catalysis. Through the metal-catalyzed radical relay strategy, a wide range of medium-sized lactones (9-11 membered) and macrolactones (12, 13, 15, 18, and 19-membered) were constructed in moderate to good yields, along with diverse functional groups including CN, N3, SCN, and X groups installed concurrently. Density functional theory (DFT) calculations revealed that reductive elimination of the cycloalkyl-Cu(iii) species is a more favorable reaction pathway for the cross-coupling step. Based on the results of experiments and DFT, a Cu(i)/Cu(ii)/Cu(iii) catalytic cycle is proposed for this tandem reaction.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| | - Pengchen Ma
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
- Department of Chemistry and Biochemistry, University of California Los Angeles California 90095-1569 USA
| | - Lu Zhang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| | - Shenyu Shen
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| | - Hong-Jie Miao
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| | - Le Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California Los Angeles California 90095-1569 USA
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| | - Li-Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University Xi'an 710049 China
| |
Collapse
|
6
|
Recent Advances in Molecule Synthesis Involving C-C Bond Cleavage of Ketoxime Esters. Molecules 2023; 28:molecules28062667. [PMID: 36985637 PMCID: PMC10058904 DOI: 10.3390/molecules28062667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
The synthetic strategies of oxime derivatives participating in radical-type reactions have been rapidly developed in the last few decades. Among them, the N–O bond cleavage of oxime esters leading to formation of nitrogen-centered radicals triggers adjacent C–C bond cleavage to produce carbon-centered free radicals, which has been virtually used in organic synthesis in recent years. Herein, we summarized the radical reactions involving oxime N–O bond and C–C bond cleavage through this special reaction form, including those from acyl oxime ester derivatives and cyclic ketoxime ester derivatives. These contents were systematically classified according to different reaction types. In this review, the free radical reactions involving acyl oxime esters and cyclic ketoxime esters after 2021 were included, with emphasis on the substrate scope and reaction mechanism.
Collapse
|
7
|
Liu S, Zhang L, Xu L, Gao P, Duan XH, Guo LN. Fe-Catalyzed Alkylazidation of α-Trifluoromethylalkenes: An Access to Quaternary Stereocenters Containing CF 3 and N 3 Groups. Org Lett 2023. [PMID: 36815835 DOI: 10.1021/acs.orglett.3c00439] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
A concise Fe-catalyzed alkylazidation of α-trifluoromethylalkenes via a C-C bond cleavage/radical addition/azidation cascade is described. This protocol features a broad substrate scope, excellent functional group compatibility, and the ability to be performed on a gram scale, thus offering a practical and step-economic approach to the synthetically useful tertiary α-trifluoromethyl azides.
Collapse
Affiliation(s)
- Shuai Liu
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Lu Zhang
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Liang Xu
- School of Chemistry and Chemical Engineering, Key Laboratory for Green Processing of Chemical Engineering of Xin-jiang Bingtuan, Shihezi University, Shihezi, Xinjiang 832003, China
| | - Pin Gao
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Xin-Hua Duan
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Li Na Guo
- Department of Chemistry, School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry and Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| |
Collapse
|
8
|
Abstract
Organic peroxides are becoming popular intermediates for novel chemical transformations. The weak O-O bond is readily reduced by transition metals, including iron and copper, to initiate a radical cascade process that breaks C-C bonds. Great potential exists for the rapid generation of complexity, originating from the ability to couple the resulting free radicals with a wide range of partners. First, this review article discusses the history and synthesis of organic peroxides, providing the context necessary to understand this methodology. Then, it highlights 91 examples of recent applications of the radical functionalization of C-C bonds accessed through the transition metal-mediated reduction of organic peroxides. Finally, we provide some comments about safety when working with organic peroxides.
Collapse
Affiliation(s)
- Jeremy H. Dworkin
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - Brady W. Dehnert
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| | - Ohyun Kwon
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095-1569, USA
| |
Collapse
|
9
|
Ying Y, Ye Z, Wang A, Chen X, Meng S, Xu P, Gao Y, Zhao Y. Nickel-Catalyzed Radical Ring-Opening Phosphorylation of Cycloalkyl Hydroperoxides Leading to Distal Acylphosphine Oxides. Org Lett 2023; 25:928-932. [PMID: 36729387 DOI: 10.1021/acs.orglett.2c04233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A facile and efficient nickel-catalyzed C-C bond cleavage/phosphorylation of various cycloalkyl hydroperoxides was developed. This radical ring-opening strategy provided practical access to structurally diverse distal ketophosphine oxides in one pot through concurrent C═O/C-P bond formation with high atom economy under mild room temperature and base-free conditions.
Collapse
Affiliation(s)
- Yue Ying
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Ziyi Ye
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - An Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Xingjie Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Shanshan Meng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, Fujian, China
| | - Pengxiang Xu
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yuxing Gao
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| | - Yufen Zhao
- Department of Chemistry and Key Laboratory for Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
10
|
Shan QC, Liu S, Shen Y, Ma M, Duan XH, Gao P, Guo LN. Switchable In Situ SO 2 Capture and CF 3 Migration of Enol Triflates with Peroxyl Compounds under Iron Catalysis. Org Lett 2022; 24:6653-6657. [PMID: 36048533 DOI: 10.1021/acs.orglett.2c02663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Switchable in situ SO2 capture and CF3 migration of enol triflates with peroxyl compounds under iron catalysis are presented. By regulating the structure of peroxides, a variety of keto-functionalized dialkyl sulfones and α-trifluoromethyl ketones were selectively synthesized in good yields under mild conditions.
Collapse
Affiliation(s)
- Qi-Chao Shan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Shuai Liu
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yuncheng Shen
- Shaanxi Yuneng Group Energy and Chemical Research Institute Co., Ltd, Yu'lin 719000, China
| | - Mingming Ma
- Shaanxi Yuneng Group Energy and Chemical Research Institute Co., Ltd, Yu'lin 719000, China
| | - Xin-Hua Duan
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Pin Gao
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Li-Na Guo
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
11
|
Guo LN, Yuan ZH, Hong X, Tao JQ, Ma YJ, Duan XH. Thermo-Induced Decarboxylative α-C(sp3)−H Fluoroalkylation of Glycine Derivatives with Fluorinated Peroxy Esters. Org Chem Front 2022. [DOI: 10.1039/d2qo00613h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A thermo-induced decarboxylative α-C(sp3)−H fluoroalkylation of glycine derivatives with fluorinated peroxy esters was described. This protocol features transition metal free, redox-neutral conditions, broad substrate scope and excellent functional group tolerance,...
Collapse
|
12
|
He JQ, Yang ZX, Zhou XL, Li Y, Gao S, Shi L, Liang D. Exploring the regioselectivity of the cyanoalkylation of 3-aza-1,5-dienes: photoinduced synthesis of 3-cyanoalkyl-4-pyrrolin-2-ones. Org Chem Front 2022. [DOI: 10.1039/d2qo00918h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Regioselective cyanoalkylalkenylation of 3-aza-1,5-dienes with oxime esters induced by visible light.
Collapse
Affiliation(s)
- Jia-Qin He
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Zhi-Xian Yang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Xue-Lu Zhou
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Yanni Li
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Shulin Gao
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Lou Shi
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| | - Deqiang Liang
- School of Chemistry and Chemical Engineering, Kunming University, Kunming 650214, China
| |
Collapse
|