1
|
Zong Z, Yang J, Yuan L, Wang X, Chen JQ, Wu J. Conversion of Carboxylic Acids to Sulfonamide Bioisosteres via Energy Transfer Photocatalysis. Org Lett 2024; 26:8626-8631. [PMID: 39351982 DOI: 10.1021/acs.orglett.4c03325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
More than 450 drugs containing a carboxylic acid functional group have been marketed worldwide. Herein, we report a concise and environmentally friendly organic photoinduced protocol for the interconversion of carboxylic acids into their bioisosteres. With this strategy, a variety of substrates, including alkyl, (hetero)aryl, and alkenyl acids, as well as various biologically relevant acids are successfully converted into primary sulfonamides.
Collapse
Affiliation(s)
- Zhipeng Zong
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jingjing Yang
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Lulu Yuan
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Xiaojie Wang
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jian-Qiang Chen
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering and Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
2
|
Mkrtchyan S, Jakubczyk M, Sarfaraz S, Ayub K, Iaroshenko VO. Ru-catalyzed activation of free phenols in a one-step Suzuki-Miyaura cross-coupling under mechanochemical conditions. Chem Sci 2024:d4sc01704h. [PMID: 39184287 PMCID: PMC11342143 DOI: 10.1039/d4sc01704h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
Activation of phenols by a Ru-catalyst allows for the resulting η5-phenoxo complex to selectively react with a variety of nucleophiles under mechanochemical conditions. Conversion of phenolic hydroxy groups without derivatization is important for late-stage modifications of pharmaceuticals and in the context of lignin-material processing. We present a one-step, Ru-catalyzed cross-coupling of phenols with boronic acids, aryl trialkoxysilanes and potassium benzoyltrifluoroborates under mechano-chemical conditions. The protocol accepts a wide scope of starting materials and allows for gram-scale synthesis in excellent yields. The developed approach constitutes a very interesting and waste-limiting alternative to the known methods.
Collapse
Affiliation(s)
- Satenik Mkrtchyan
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University Tajovského 40 97401 Banska Bystrica Slovakia
- University Centre for Research & Development, Chandigarh University Mohali Punjab 140413 India
| | - Michał Jakubczyk
- Institute of Inorganic Chemistry, Czech Academy of Sciences Husinec-Řež č.p. 1001 250 68 Husinec-Řež Czech Republic
- Laboratory of Molecular Assays and Imaging, Institute of Bioorganic Chemistry, Polish Academy of Sciences Noskowskiego 12/14 61-704 Poznań Poland
| | - Sehrish Sarfaraz
- Department of Chemistry, COMSATS University, Abbottabad Campus Abbottabad KPK 22060 Pakistan
| | - Khurshid Ayub
- Department of Chemistry, COMSATS University, Abbottabad Campus Abbottabad KPK 22060 Pakistan
| | - Viktor O Iaroshenko
- Department of Chemistry, Faculty of Natural Sciences, Matej Bel University Tajovského 40 97401 Banska Bystrica Slovakia
- University Centre for Research & Development, Chandigarh University Mohali Punjab 140413 India
- Department of Fiber and Polymer Technology, Division of Wood Chemistry and Pulp Technology, School of Chemistry, Biotechnology and Health, KTH Royal Institute of Technology Teknikringen 56-58 SE-100 44 Stockholm Sweden
- Functional Materials Group, Gulf University for Science and Technology Mubarak Al-Abdullah 32093 Kuwait
- Centre of Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University Rajpura-140401 Punjab India
| |
Collapse
|
3
|
Wang MM, Johnsson K. Metal-free introduction of primary sulfonamide into electron-rich aromatics. Chem Sci 2024; 15:12310-12315. [PMID: 39118614 PMCID: PMC11304520 DOI: 10.1039/d4sc03075c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
We report herein a direct and practical synthesis of arylsulfonamides from electron-rich aromatic compounds by using in situ generated N-sulfonylamine as the active electrophile. Substrates include derivatives of aniline, indole, pyrrole, furan, styrene and so on. The reaction proceeds under mild conditions and tolerates many sensitive functional groups such as alkyne, acetate, the trifluoromethoxy group or acetoxymethyl ester. Applications of this method for the construction of metal ion sensors and fluorogenic dye have been demonstrated, thus highlighting the potential of this method for probe development.
Collapse
Affiliation(s)
- Ming-Ming Wang
- Department of Chemical Biology, Max Planck Institute for Medical Research Jahnstrasse 29 69120 Heidelberg Germany
| | - Kai Johnsson
- Department of Chemical Biology, Max Planck Institute for Medical Research Jahnstrasse 29 69120 Heidelberg Germany
- Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL) 1015 Lausanne Switzerland
| |
Collapse
|
4
|
Losev MA, Kozlov AS, Kharitonov VB, Afanasyev OI, Kliuev FS, Bulygina LA, Khrushcheva NS, Loginov DA, Chusov D. Reductive coupling of nitroarenes with carboxylic acids - a direct route to amide synthesis. Org Biomol Chem 2023; 21:8477-8481. [PMID: 37850356 DOI: 10.1039/d3ob01452e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
A straightforward and selective way for the preparation of amides from nitroarenes and carboxylic acids using carbon monoxide as a reductant was developed. This protocol does not require any non-gaseous additives, thus simplifying product isolation. Aliphatic carboxylic acid was modified in the presence of aromatic ones, and reducible functional groups such as CC, Ar-Br, and R-NO2 were saved.
Collapse
Affiliation(s)
- Mikhail A Losev
- A.N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences, Moscow, 119991, Russian Federation.
- National Research University Higher School of Economics, Moscow, 101000, Russian Federation
| | - Andrey S Kozlov
- A.N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences, Moscow, 119991, Russian Federation.
| | - Vladimir B Kharitonov
- A.N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences, Moscow, 119991, Russian Federation.
| | - Oleg I Afanasyev
- A.N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences, Moscow, 119991, Russian Federation.
| | - Fedor S Kliuev
- A.N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences, Moscow, 119991, Russian Federation.
- National Research University Higher School of Economics, Moscow, 101000, Russian Federation
| | - Ludmila A Bulygina
- A.N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences, Moscow, 119991, Russian Federation.
| | - Natalya S Khrushcheva
- A.N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences, Moscow, 119991, Russian Federation.
| | - Dmitry A Loginov
- A.N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences, Moscow, 119991, Russian Federation.
| | - Denis Chusov
- A.N. Nesmeyanov Institute of Organoelement compounds of the Russian Academy of Sciences, Moscow, 119991, Russian Federation.
- National Research University Higher School of Economics, Moscow, 101000, Russian Federation
| |
Collapse
|
5
|
Bedair MA, Abuelela AM, Alshareef M, Owda M, Eliwa EM. Ethyl ester/acyl hydrazide-based aromatic sulfonamides: facile synthesis, structural characterization, electrochemical measurements and theoretical studies as effective corrosion inhibitors for mild steel in 1.0 M HCl. RSC Adv 2022; 13:186-211. [PMID: 36605653 PMCID: PMC9764999 DOI: 10.1039/d2ra05939h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
In this research paper, aromatic sulfonamide-derived ethyl ester (p-TSAE) and its acyl hydrazide (p-TSAH) were directly synthesized, characterized, and employed for the first time as prospective anticorrosive agents to protect mild steel in 1.0 M HCl conditions. The corrosion efficiency was probed by electrochemical methods including polarization, impedance, and frequency modulation measurements. Optimal efficiencies of 94% and 92% were detected for the hydrazide and ester, respectively, revealing excellent corrosion inhibition. Moreover, both the hydrazide and ester molecules combat the cathodic and anodic reactions correspondingly in a mixed-type manner. The electron transfer (ET) at the inhibitor/metal interface was evaluated using DFT at the B3LYP/6-31g(d,p) level. Natural bond orbital analysis (NBO) and frontier molecular orbital analysis (FMO) calculations showed superior capabilities of the synthesized inhibitors to easily reallocate charge into the metal surface. However, the hydrazide molecules showed slightly better inhibition efficiency than the ester due to the strong interaction between the lone pairs of the nitrogen atoms and the d-orbitals of the metal. The chemical hardness of the hydrazide and ester are 2.507 and 2.511 eV, respectively, in good accordance with the recorded electrochemical inhibition efficiencies for both molecules. Good and straightforward correlations between the experiments and calculations are obtained.
Collapse
Affiliation(s)
- Mahmoud A. Bedair
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar UniversityNasr City 11884CairoEgypt,College of Science and Arts, University of BishaP.O. Box 101Al-Namas 61977Saudi Arabia
| | - Ahmed M. Abuelela
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar UniversityNasr City 11884CairoEgypt
| | - Mubark Alshareef
- Department of Chemistry, Faculty of Applied Science, Umm Al Qura UniversityMakkah 24230Saudi Arabia
| | - Medhat Owda
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar UniversityNasr City 11884CairoEgypt
| | - Essam M. Eliwa
- Department of Chemistry, Faculty of Science (Men's Campus), Al-Azhar UniversityNasr City 11884CairoEgypt
| |
Collapse
|
6
|
Williams MTJ, Morrill LC, Browne DL. Mechanochemical Organocatalysis: Do High Enantioselectivities Contradict What We Might Expect? CHEMSUSCHEM 2022; 15:e202102157. [PMID: 34767693 PMCID: PMC9300213 DOI: 10.1002/cssc.202102157] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 11/09/2021] [Indexed: 05/10/2023]
Abstract
Ball mills input energy to samples by pulverising the contents of the jar. Each impact on the sample or wall of the jar results in an instantaneous transmission of energy in the form of a temperature and pressure increase (volume reduction). Conversely, enantioselective organocatalytic reactions proceed through perceived delicate and well-organised transition states. Does there exist a dichotomy in the idea of enantioselective mechanochemical organocatalysis? This Review provides a survey of the literature reporting the combination of organocatalytic reactions with mechanochemical ball milling conditions. Where possible, direct comparisons of stirred in solution, stirred neat and ball milled processes are drawn with a particular focus on control of stereoselectivity.
Collapse
Affiliation(s)
- Matthew T. J. Williams
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | - Louis C. Morrill
- Cardiff Catalysis InstituteSchool of ChemistryCardiff UniversityPark PlaceCardiffCF10 3ATUK
| | - Duncan L. Browne
- Department of Pharmaceutical and Biological ChemistrySchool of PharmacyUniversity College London29–39 Brunswick Square, BloomsburyLondonWC1N 1AXUK
| |
Collapse
|