1
|
Malik A, Sharma PR, Sharma RK. α-Methylbenzylamine Functionalized Crown-Ether-Appended Calix[4]arene Phase Transfer Catalyst for Enantioselective Henry Reaction. Chemistry 2023; 29:e202302638. [PMID: 37850687 DOI: 10.1002/chem.202302638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/19/2023]
Abstract
In this letter, we designed a highly selective α-methylbenzylamine functionalized crown-ether-appended calix[4]arene derived phase transfer catalyst for asymmetric nitroaldol reaction to provide the desired nitroaldol adducts in high yields (up to 99 % yield) with good to excellent enantioselectivities (up to 99.8 % ee).
Collapse
Affiliation(s)
- Apoorva Malik
- Sustainable Materials and Catalysis Research Laboratory (SMCRL) Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, 342037, India
| | - Pragati R Sharma
- Sustainable Materials and Catalysis Research Laboratory (SMCRL) Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, 342037, India
| | - Rakesh K Sharma
- Sustainable Materials and Catalysis Research Laboratory (SMCRL) Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur, 342037, India
| |
Collapse
|
2
|
Peng X, Rahim A, Peng W, Jiang F, Gu Z, Wen S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chem Rev 2023; 123:1364-1416. [PMID: 36649301 PMCID: PMC9951228 DOI: 10.1021/acs.chemrev.2c00591] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Indexed: 01/18/2023]
Abstract
Hypervalent aryliodoumiums are intensively investigated as arylating agents. They are excellent surrogates to aryl halides, and moreover they exhibit better reactivity, which allows the corresponding arylation reactions to be performed under mild conditions. In the past decades, acyclic aryliodoniums are widely explored as arylation agents. However, the unmet need for acyclic aryliodoniums is the improvement of their notoriously low reaction economy because the coproduced aryl iodides during the arylation are often wasted. Cyclic aryliodoniums have their intrinsic advantage in terms of reaction economy, and they have started to receive considerable attention due to their valuable synthetic applications to initiate cascade reactions, which can enable the construction of complex structures, including polycycles with potential pharmaceutical and functional properties. Here, we are summarizing the recent advances made in the research field of cyclic aryliodoniums, including the nascent design of aryliodonium species and their synthetic applications. First, the general preparation of typical diphenyl iodoniums is described, followed by the construction of heterocyclic iodoniums and monoaryl iodoniums. Then, the initiated arylations coupled with subsequent domino reactions are summarized to construct polycycles. Meanwhile, the advances in cyclic aryliodoniums for building biaryls including axial atropisomers are discussed in a systematic manner. Finally, a very recent advance of cyclic aryliodoniums employed as halogen-bonding organocatalysts is described.
Collapse
Affiliation(s)
- Xiaopeng Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| | - Abdur Rahim
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Weijie Peng
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Feng Jiang
- College
of Pharmacy, Key Laboratory of Prevention and Treatment of Cardiovascular
and Cerebrovascular Diseases, Ministry of Education, Jiangxi Province
Key Laboratory of Biomaterials and Biofabrication for Tissue Engineering, Gannan Medical University, Ganzhou341000, P.R. China
| | - Zhenhua Gu
- Department
of Chemistry, University of Science and
Technology of China, 96 Jinzhai Road, Hefei230026, P. R. China
| | - Shijun Wen
- State
Key Laboratory of Oncology in South China, Collaborative Innovation
Center for Cancer Medicine, Sun Yat-sen
University Cancer Center, 651 Dongfeng East Road, Guangzhou510060, P. R. China
| |
Collapse
|
3
|
Lu J, Yao B, Zhan D, Sun Z, Ji Y, Zhang X. One-pot double annulations to confer diastereoselective spirooxindolepyrrolothiazoles. Beilstein J Org Chem 2022; 18:1607-1616. [PMID: 36530533 PMCID: PMC9727273 DOI: 10.3762/bjoc.18.171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 11/15/2022] [Indexed: 12/01/2023] Open
Abstract
A novel four-component reaction in one pot as an atom- and step-economic process was developed to synthesize diastereoselectively spirooxindolepyrrolothiazoles through sequential N,S-acetalation of aldehydes with cysteine and decarboxylative [3 + 2] cycloaddition with olefinic oxindoles. High synthetic efficiency, operational simplification and reaction process economy using EtOH as solvent, and only releasing CO2 and H2O as side products confer this approach favorable in green chemistry metrics analysis.
Collapse
Affiliation(s)
- Juan Lu
- Department of Chemistry, Changchun Normal University, Changchun 130031, P. R. China
| | - Bin Yao
- Department of Civil Engineering, University of North Dakota, 243 Centennial Drive Stop 8115, Grand Forks, North Dakota 58202, United States
| | - Desheng Zhan
- Department of Chemistry, Changchun Normal University, Changchun 130031, P. R. China
| | - Zhuo Sun
- Department of Chemistry, Changchun Normal University, Changchun 130031, P. R. China
| | - Yun Ji
- Department of Chemical Engineering, University of North Dakota, 241 Centennial Drive Stop 7101, Grand Forks, North Dakota 58202, United States
| | - Xiaofeng Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard University, Boston, MA 02215, USA
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, United States
| |
Collapse
|
4
|
Sharma PR, Malik A, Bandaru S, Vashisth K, Rana NK, Sharma RK. Experimental and computational studies on the Cinchona anchored calixarene catalysed asymmetric Michael addition reaction. Chem Commun (Camb) 2022; 58:7249-7252. [PMID: 35670109 DOI: 10.1039/d2cc02422e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Lower-rim Cinchona anchored calix[4]arene cationic catalysts were developed for asymmetric Michael addition of acetylacetone to β-nitrostyrenes. The desired Michael adducts were formed with high yields and enantioselectivities. Density functional theory investigations throw light on the catalyst-substrate interaction and the reaction mechanism.
Collapse
Affiliation(s)
- Pragati R Sharma
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India.
| | - Apoorva Malik
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India.
| | - Sateesh Bandaru
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou-310018, China
| | - Kanika Vashisth
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India. .,The Department of Chemistry & Biochemistry, Baylor University, Baylor Science Building, Baylor Sciences Bldg. D.208, One Bear Place #97348, Waco, TX 76798
| | - Nirmal K Rana
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India.
| | - Rakesh K Sharma
- Sustainable Materials and Catalysis Research Laboratory (SMCRL), Department of Chemistry, Indian Institute of Technology Jodhpur, Jodhpur-342037, India.
| |
Collapse
|
5
|
Nakashima K, Minai A, Okuaki Y, Matsushima Y, Hirashima SI, Miura T. Organocatalytic one-pot asymmetric synthesis of 6-trifluoromethyl-substituted 7,8-dihydrochromen-6-ol. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153733] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
6
|
Rénio M, Murtinho D, Ventura MR. New bifunctional 1,3-diamine organocatalysts derived from (+)-camphoric acid for asymmetric Michael addition of 1,3-dicarbonyl compounds to nitroolefins. Chirality 2022; 34:782-795. [PMID: 35166402 DOI: 10.1002/chir.23424] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 02/05/2023]
Abstract
Novel 1,3-diamine-derived bifunctional thiourea and squaramide organocatalysts were synthesized from (+)-camphoric acid. These catalysts were easily obtained in up to two to five synthetic steps, in a flexible approach that facilitates their structure variation. Their catalytic activity was examined in the asymmetric Michael addition of 1,3-dicarbonyl compounds to several trans-β-nitrostyrenes. Yields up to 98% and enantiomeric excesses up to 74% and high diastereoselectivities when applicable (dr up to 93:7) were obtained in these reactions showing that 1,3-diamine-derived bifunctional thioureas are efficient organocatalysts.
Collapse
Affiliation(s)
- Márcia Rénio
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal
| | - Dina Murtinho
- Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, Coimbra, Portugal
| | - M Rita Ventura
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| |
Collapse
|