1
|
Schaaf RE, Quirke JCK, Ghavami M, Tonogai EJ, Lee HY, Barlock SL, Trzupek TR, Abo KR, Rees MG, Ronan MM, Roth JA, Hergenrother PJ. Identification of a Selective Anticancer Agent from a Collection of Complex-And-Diverse Compounds Synthesized from Stevioside. J Am Chem Soc 2025; 147:10647-10661. [PMID: 40070033 DOI: 10.1021/jacs.5c00919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025]
Abstract
Compounds constructed by distorting the ring systems of natural products serve as a ready source of complex and diverse molecules, useful for a variety of applications. Herein is presented the use of the diterpenoids steviol and isosteviol as starting points for the construction of >50 new compounds through this complexity-to-diversity approach, featuring novel ring system distortions and a noteworthy thallium(III) nitrate (TTN)-mediated ring fusion. Evaluation of this collection identified SteviX4 as a potent and selective anticancer compound, inducing cell death at low nanomolar concentrations against some cancer cell lines in culture, compared to micromolar activity against others. SteviX4 induces ferroptotic cell death in susceptible cell lines, and target identification experiments reveal SteviX4 acts as an inhibitor of glutathione peroxidase 4 (GPX4), a critical protein that protects cancer cells against ferroptosis. In its induction of cell death, SteviX4 displays enhanced cell line selectivity relative to most known GPX4 inhibitors. SteviX4 was used to reveal dependency on GPX4 as a vulnerability of certain cancer cell lines, not tied to any one type of cancer, suggesting GPX4 inhibition as a cancer type-agnostic anticancer strategy. With its high fraction of sp3-hybridized carbons and considerable cell line selectivity and potency, SteviX4 is unique among GPX4 inhibitors, serving as an outstanding probe compound and basis for further translational development.
Collapse
Affiliation(s)
- Rachel E Schaaf
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Jonathan C K Quirke
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Maryam Ghavami
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Emily J Tonogai
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Hyang Yeon Lee
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Samantha L Barlock
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Thomas R Trzupek
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kyle R Abo
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Matthew G Rees
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Melissa M Ronan
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Jennifer A Roth
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, Massachusetts 02142, United States
| | - Paul J Hergenrother
- Department of Chemistry, Cancer Center at Illinois, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
2
|
Li Y, Cheng S, Tian Y, Zhang Y, Zhao Y. Recent ring distortion reactions for diversifying complex natural products. Nat Prod Rep 2022; 39:1970-1992. [PMID: 35972343 DOI: 10.1039/d2np00027j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Covering: 2013-2022.Chemical diversification of natural products is an efficient way to generate natural product-like compounds for modern drug discovery programs. Utilizing ring-distortion reactions for diversifying natural products would directly alter the core ring systems of small molecules and lead to the production of structurally complex and diverse compounds for high-throughput screening. We review the ring distortion reactions recently used in complexity-to-diversity (CtD) and pseudo natural products (pseudo-NPs) strategies for diversifying complex natural products. The core ring structures of natural products are altered via ring expansion, ring cleavage, ring edge-fusion, ring spiro-fusion, ring rearrangement, and ring contraction. These reactions can rapidly provide natural product-like collections with properties suitable for a wide variety of biological and medicinal applications. The challenges and limitations of current ring distortion reactions are critically assessed, and avenues for future improvements of this rapidly expanding field are discussed. We also provide a toolbox for chemists for the application of ring distortion reactions to access natural product-like molecules.
Collapse
Affiliation(s)
- Yu Li
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Shihao Cheng
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yun Tian
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yanan Zhang
- School of Pharmacy, Nantong University, Nantong 226001, China.
| | - Yu Zhao
- School of Pharmacy, Nantong University, Nantong 226001, China.
| |
Collapse
|