1
|
Gao X, He Q, Chen H, Cai W, Xu L, Zhang X, Zhu N, Feng S. Advances in the Molecular Modification of Microbial ω-Transaminases for Asymmetric Synthesis of Bulky Chiral Amines. Microorganisms 2025; 13:820. [PMID: 40284656 PMCID: PMC12029284 DOI: 10.3390/microorganisms13040820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/25/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
ω-Transaminases are biocatalysts capable of asymmetrically synthesizing high-value chiral amines through the reductive amination of carbonyl compounds, and they are ubiquitously distributed across diverse microorganisms. Despite their broad natural occurrence, the industrial utility of naturally occurring ω-transaminases remains constrained by their limited catalytic efficiency toward sterically bulky substrates. Over recent decades, the use of structure-guided molecular modifications, leveraging three-dimensional structures, catalytic mechanisms, and machine learning-driven predictions, has emerged as a transformative strategy to address this limitation. Notably, these advancements have unlocked unprecedented progress in the asymmetric synthesis of bulky chiral amines, which is exemplified by the industrial-scale production of sitagliptin using engineered ω-transaminases. This review systematically explores the structural and mechanistic foundations of ω-transaminase engineering. We first delineate the substrate binding regions of these enzymes, focusing on their defining features such as substrate tunnels and dual pockets. These structural elements serve as critical targets for rational design to enhance substrate promiscuity. Next, we dissect the catalytic and substrate recognition mechanisms of (S)- and (R)-ω-transaminases. Drawing on these insights, we consolidate recent advances in engineering ω-transaminases to highlight their performance in synthesizing bulky chiral amines and aim to guide future research and the industrial implementation of tailored ω-transaminases.
Collapse
Affiliation(s)
- Xinxing Gao
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (X.G.); (Q.H.); (H.C.); (W.C.); (L.X.); (X.Z.); (N.Z.)
| | - Qingming He
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (X.G.); (Q.H.); (H.C.); (W.C.); (L.X.); (X.Z.); (N.Z.)
| | - Hailong Chen
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (X.G.); (Q.H.); (H.C.); (W.C.); (L.X.); (X.Z.); (N.Z.)
| | - Wangshui Cai
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (X.G.); (Q.H.); (H.C.); (W.C.); (L.X.); (X.Z.); (N.Z.)
| | - Long Xu
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (X.G.); (Q.H.); (H.C.); (W.C.); (L.X.); (X.Z.); (N.Z.)
| | - Xin Zhang
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (X.G.); (Q.H.); (H.C.); (W.C.); (L.X.); (X.Z.); (N.Z.)
| | - Nianqing Zhu
- Jiangsu Key Laboratory of Chiral Pharmaceuticals Biosynthesis, College of Pharmacy and Chemistry & Chemical Engineering, Taizhou University, Taizhou 225300, China; (X.G.); (Q.H.); (H.C.); (W.C.); (L.X.); (X.Z.); (N.Z.)
| | - Shoushuai Feng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214000, China
| |
Collapse
|
2
|
Fotiadou R, Pavlidis IV. Challenges and good practices on transaminase-catalysed synthesis of optically pure amines. Methods Enzymol 2025; 714:297-312. [PMID: 40288843 DOI: 10.1016/bs.mie.2025.01.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Transaminase-catalysed synthesis of chiral amines has been highlighted as an important strategy to get access to optically pure primary amines with high selectivity. However, their application is still hindered from several factors. The co-factor instability leads to instability of the protein itself, while the thermodynamics typically do not favor the desired amination reaction. Thus, several strategies have been suggested to tackle the thermodynamic issue, while parameters that initially may seem trivial, such as selection of buffer salt, pH and temperature, recently were studied more thoroughly. In this chapter we provide a review on the suggested strategies with specific commentaries on their application, as well as protocol for the synthesis of optically pure amines with the two most commonly used amine donors, namely alanine and isopropylamine.
Collapse
Affiliation(s)
- Renia Fotiadou
- Department of Chemistry, University of Crete, Voutes University Campus, Heraklion, Greece
| | - Ioannis V Pavlidis
- Department of Chemistry, University of Crete, Voutes University Campus, Heraklion, Greece.
| |
Collapse
|
3
|
Gao X, Zhang W, Wei X, Zhao L, Che C, Zhang Z, Wei H, Qin B, Liu W, Jia X, You S. Structure-guided engineering an (R)-transaminase from Mycobacterium neoaurum for efficient synthesis of chiral N-heterocyclic amines. Int J Biol Macromol 2025; 287:138591. [PMID: 39667461 DOI: 10.1016/j.ijbiomac.2024.138591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/14/2024]
Abstract
(R)-selective amine transaminases (R-ATAs) show considerable potential for the asymmetric synthesis of chiral drug intermediates. However, the low catalytic efficiency of natural R-ATAs toward bulky ketone substrates, such as N-heterocyclic compounds, severely limits its industrial application. In this study, five putative (R)-ATAs were mined from NCBI database, among which MnTA showed the highest activity for N-Boc-3-pyrrolidinone (1a) and N-Boc-3-piperidone (2a), and its crystal structure was performed. Furthermore, a structure-guided engineering strategy combined with directed evolution and in silico design was executed. Four key sites for substrate binding were identified based on alanine scanning. Then, a saturated mutation library was constructed, and residues G66 and F127 were found to be the key sites affecting substrate binding. By further combining mutation and iterative saturation mutation, variants with markedly improved activity were obtained. The optimal mutant MnTA-M1 (F127M) and MnTA-M5 (G66L/H67N/F127M/L160I) also displayed significantly enhanced activity toward various cyclic ketones or bulky N-heterocyclic ketone analogs. Finally, the gram-scale synthesis of (R)-3-amino-N-Boc-pyrrolidin (1b) and (R)-3-amino-N-Boc-piperidine (2b) was performed by the best mutants, achieving the space-time yields (STY) of 108 and 214 g/L·d, respectively. This research provides efficient biocatalysts for the synthesis of various chiral N-heterocyclic amines, along with a structural insight into the molecular mechanism for enhanced catalytic performance.
Collapse
Affiliation(s)
- Xiao Gao
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Wenhe Zhang
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Xiaowei Wei
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Lu Zhao
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Changli Che
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Zhuobing Zhang
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Hongli Wei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, People's Republic of China
| | - Bin Qin
- Wuya College of Innovation, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China
| | - Weidong Liu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, 32 West 7th Avenue, Tianjin Airport Economic Area, Tianjin 300308, People's Republic of China.
| | - Xian Jia
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China.
| | - Song You
- School of Life Sciences and Biopharmaceutical Sciences, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe, Shenyang 110016, People's Republic of China.
| |
Collapse
|
4
|
Krishna R, Wang J, Ahern W, Sturmfels P, Venkatesh P, Kalvet I, Lee GR, Morey-Burrows FS, Anishchenko I, Humphreys IR, McHugh R, Vafeados D, Li X, Sutherland GA, Hitchcock A, Hunter CN, Kang A, Brackenbrough E, Bera AK, Baek M, DiMaio F, Baker D. Generalized biomolecular modeling and design with RoseTTAFold All-Atom. Science 2024; 384:eadl2528. [PMID: 38452047 DOI: 10.1126/science.adl2528] [Citation(s) in RCA: 182] [Impact Index Per Article: 182.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/27/2024] [Indexed: 03/09/2024]
Abstract
Deep-learning methods have revolutionized protein structure prediction and design but are presently limited to protein-only systems. We describe RoseTTAFold All-Atom (RFAA), which combines a residue-based representation of amino acids and DNA bases with an atomic representation of all other groups to model assemblies that contain proteins, nucleic acids, small molecules, metals, and covalent modifications, given their sequences and chemical structures. By fine-tuning on denoising tasks, we developed RFdiffusion All-Atom (RFdiffusionAA), which builds protein structures around small molecules. Starting from random distributions of amino acid residues surrounding target small molecules, we designed and experimentally validated, through crystallography and binding measurements, proteins that bind the cardiac disease therapeutic digoxigenin, the enzymatic cofactor heme, and the light-harvesting molecule bilin.
Collapse
Affiliation(s)
- Rohith Krishna
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Jue Wang
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Woody Ahern
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98105, USA
| | - Pascal Sturmfels
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA 98105, USA
| | - Preetham Venkatesh
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98105, USA
| | - Indrek Kalvet
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA
| | - Gyu Rie Lee
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA
| | | | - Ivan Anishchenko
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Ian R Humphreys
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Ryan McHugh
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Graduate Program in Biological Physics, Structure and Design, University of Washington, Seattle, WA 98105, USA
| | - Dionne Vafeados
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Xinting Li
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | | | - Andrew Hitchcock
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - C Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Alex Kang
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Evans Brackenbrough
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Asim K Bera
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - Minkyung Baek
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98105, USA
- Institute for Protein Design, University of Washington, Seattle, WA 98105, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA 98105, USA
| |
Collapse
|
5
|
Li T, Zhu H, Jia W, Tian X, Xu Z, Zhu J, Liu W, Cao Y. Identification, characterization and application of M16AT, a new organic solvent-tolerant (R)-enantio-selective type IV amine transaminase from Mycobacterium sp. ACS1612. Chembiochem 2024; 25:e202300812. [PMID: 38351400 DOI: 10.1002/cbic.202300812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/10/2024] [Indexed: 02/29/2024]
Abstract
Biocatalysis has emerged as a powerful alternative to traditional chemical methods, especially for asymmetric synthesis. As biocatalysts usually exhibit excellent chemical, regio- and enantioselectivity, they facilitate and simplify many chemical processes for the production of a broad range of products. Here, a new biocatalyst called, R-selective amine transaminases (R-ATAs), was obtained from Mycobacterium sp. ACS1612 (M16AT) using in-silico prediction combined with a genome and protein database. A two-step simple purification process could yield a high concentration of pure enzyme, suggesting that industrial application would be inexpensive. Additionally, the newly identified and characterized R-ATAs displayed a broad substrate spectrum and strong tolerance to organic solvents. Moreover, the synthetic applicability of M16AT has been demonstrated by the asymmetric synthesis of (R)-fendiline from of (R)-1-phenylethan-1-amine.
Collapse
Affiliation(s)
- Tingting Li
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Hai Zhu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Weiwei Jia
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Xia Tian
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Ziwen Xu
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
| | - Jiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic, and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for PrecisionMeasurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430071, China
| | - Wencheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, State Key Laboratory of Cotton Biology, School of Life Sciences, Key Laboratory of Plant Stress Biology, College of Agriculture, Henan University, Kaifeng, 475004, China
| | - Yang Cao
- Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang, 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang, 222005, China
| |
Collapse
|
6
|
Liu HL, Yi PH, Wu JM, Cheng F, Liu ZQ, Jin LQ, Xue YP, Zheng YG. Identification of a novel thermostable transaminase and its application in L-phosphinothricin biosynthesis. Appl Microbiol Biotechnol 2024; 108:184. [PMID: 38289384 PMCID: PMC10827958 DOI: 10.1007/s00253-024-13023-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 11/14/2023] [Accepted: 01/18/2024] [Indexed: 02/01/2024]
Abstract
Transaminase (TA) is a crucial biocatalyst for enantioselective production of the herbicide L-phosphinothricin (L-PPT). The use of enzymatic cascades has been shown to effectively overcome the unfavorable thermodynamic equilibrium of TA-catalyzed transamination reaction, also increasing demand for TA stability. In this work, a novel thermostable transaminase (PtTA) from Pseudomonas thermotolerans was mined and characterized. The PtTA showed a high specific activity (28.63 U/mg) towards 2-oxo-4-[(hydroxy)(methyl)phosphinoyl]butyric acid (PPO), with excellent thermostability and substrate tolerance. Two cascade systems driven by PtTA were developed for L-PPT biosynthesis, including asymmetric synthesis of L-PPT from PPO and deracemization of D, L-PPT. For the asymmetric synthesis of L-PPT from PPO, a three-enzyme cascade was constructed as a recombinant Escherichia coli (E. coli G), by co-expressing PtTA, glutamate dehydrogenase (GluDH) and D-glucose dehydrogenase (GDH). Complete conversion of 400 mM PPO was achieved using only 40 mM amino donor L-glutamate. Furthermore, by coupling D-amino acid aminotransferase (Ym DAAT) from Bacillus sp. YM-1 and PtTA, a two-transaminase cascade was developed for the one-pot deracemization of D, L-PPT. Under the highest reported substrate concentration (800 mM D, L-PPT), a 90.43% L-PPT yield was realized. The superior catalytic performance of the PtTA-driven cascade demonstrated that the thermodynamic limitation was overcome, highlighting its application prospect for L-PPT biosynthesis. KEY POINTS: • A novel thermostable transaminase was mined for L-phosphinothricin biosynthesis. • The asymmetric synthesis of L-phosphinothricin was achieved via a three-enzyme cascade. • Development of a two-transaminase cascade for D, L-phosphinothricin deracemization.
Collapse
Affiliation(s)
- Han-Lin Liu
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Pu-Hong Yi
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Jia-Min Wu
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Feng Cheng
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Zhi-Qiang Liu
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Li-Qun Jin
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China.
| | - Ya-Ping Xue
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| | - Yu-Guo Zheng
- Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, The National and Local, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, People's Republic of China
| |
Collapse
|
7
|
Comparison of Four Immobilization Methods for Different Transaminases. Catalysts 2023. [DOI: 10.3390/catal13020300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Biocatalytic syntheses often require unfavorable conditions, which can adversely affect enzyme stability. Consequently, improving the stability of biocatalysts is needed, and this is often achieved by immobilization. In this study, we aimed to compare the stability of soluble and immobilized transaminases from different species. A cysteine in a consensus sequence was converted to a single aldehyde by the formylglycine-generating enzyme for directed single-point attachment to amine beads. This immobilization was compared to cross-linked enzyme aggregates (CLEAs) and multipoint attachments to glutaraldehyde-functionalized amine- and epoxy-beads. Subsequently, the reactivity and stability (i.e., thermal, storage, and solvent stability) of all soluble and immobilized transaminases were analyzed and compared under different conditions. The effect of immobilization was highly dependent on the type of enzyme, the immobilization strategy, and the application itself, with no superior immobilization technique identified. Immobilization of HAGA-beads often resulted in the highest activities of up to 62 U/g beads, and amine beads were best for the hexameric transaminase from Luminiphilus syltensis. Furthermore, the immobilization of transaminases enabled its reusability for at least 10 cycles, while maintaining full or high activity. Upscaled kinetic resolutions (partially performed in a SpinChemTM reactor) resulted in a high conversion, maintained enantioselectivity, and high product yields, demonstrating their applicability.
Collapse
|
8
|
Pagar AD, Jeon H, Khobragade TP, Sarak S, Giri P, Lim S, Yoo TH, Ko BJ, Yun H. Non-Canonical Amino Acid-Based Engineering of ( R)-Amine Transaminase. Front Chem 2022; 10:839636. [PMID: 35295971 PMCID: PMC8918476 DOI: 10.3389/fchem.2022.839636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 01/07/2023] Open
Abstract
Non-canonical amino acids (ncAAs) have been utilized as an invaluable tool for modulating the active site of the enzymes, probing the complex enzyme mechanisms, improving catalytic activity, and designing new to nature enzymes. Here, we report site-specific incorporation of p-benzoyl phenylalanine (pBpA) to engineer (R)-amine transaminase previously created from d-amino acid aminotransferase scaffold. Replacement of the single Phe88 residue at the active site with pBpA exhibits a significant 15-fold and 8-fold enhancement in activity for 1-phenylpropan-1-amine and benzaldehyde, respectively. Reshaping of the enzyme's active site afforded an another variant F86A/F88pBpA, with 30% higher thermostability at 55°C without affecting parent enzyme activity. Moreover, various racemic amines were successfully resolved by transaminase variants into (S)-amines with excellent conversions (∼50%) and enantiomeric excess (>99%) using pyruvate as an amino acceptor. Additionally, kinetic resolution of the 1-phenylpropan-1-amine was performed using benzaldehyde as an amino acceptor, which is cheaper than pyruvate. Our results highlight the utility of ncAAs for designing enzymes with enhanced functionality beyond the limit of 20 canonical amino acids.
Collapse
Affiliation(s)
- Amol D. Pagar
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Hyunwoo Jeon
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | | | - Sharad Sarak
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Pritam Giri
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Seonga Lim
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Sciences, Sungshin Women’s University, Seoul, South Korea
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|