1
|
Zhang J, Zhang S, Zhang X, Ma Z, Wang Z, Zhao B. Construction of Ni 4Mo/MoO 2 heterostructure on oxygen vacancy enriched NiMoO 4 nanorods as an efficient bifunctional electrocatalyst for overall water splitting. J Colloid Interface Sci 2023; 650:1490-1499. [PMID: 37481786 DOI: 10.1016/j.jcis.2023.07.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/05/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Despite great efforts over the past decade, rational design of bifunctional electrocatalysts with low cost and high efficiency still remains a challenge to achieve industrial water splitting. Herein, we synthesized the nickel-molybdenum nanorod array catalyst supported on NF (NMO@NM/MO) by a two-step process of hydrothermal and reductive annealing. Partial reduction of the NiMoO4 induces the structural reconstruction and formation of the Ni4Mo/MoO2 heterostructure on oxygen vacancy enriched nanorod, which bring out sufficient active sites, large specific surface area and favorable interfacial charge transfer. Thanks to the unique core-shell structure with the heterostructured Ni4Mo/MoO2 surface and defect-rich NiMoO4 core, the obtained electrocatalyst shows greatly improved hydrogen evolution reaction (HER) activity with an ultralow overpotential of 63 mV at 100 mA cm-2 (vs. 314 mV for the NiMoO4). Density function theory calculations reveal that the construction of the Ni4Mo/MoO2 heterostructure effectively accelerates H2O dissociation kinetics, while the defective NiMoO4 facilitates H* adsorption/desorption. Moreover, the heterostructure catalyst also displays excellent oxygen evolution reaction (OER) performance with the low overpotential of 274 mV at 100 mA cm-2. When coupling HER and OER by using NMO@NM/MO as both the cathode and anode, the alkaline electrolyzer delivers a current density of 10 mA cm-2 at only 1.50 V as well as good robustness. The synergistic effect of the hetero-interface and the defect engineering endows the electrocatalyst with excellent bifunctional catalytic activity for HER and OER. This work may provide a route for rational design of heterostructure electrocatalysts with multiple active components.
Collapse
Affiliation(s)
- Jingyuan Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Shasha Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xiaofeng Zhang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhen Ma
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhuo Wang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Bin Zhao
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
2
|
Qiao C, Usman Z, Wei J, Gan L, Hou J, Hao Y, Zhu Y, Zhang J, Cao C. Efficient O-O Coupling at Catalytic Interface to Assist Kinetics Optimization on Concerted and Sequential Proton-Electron Transfer for Water Oxidation. ACS NANO 2023. [PMID: 37377176 DOI: 10.1021/acsnano.3c00893] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
A catalyst kinetics optimization strategy based on tuning active site intermediates adsorption is proposed. Construction of the M-OOH on the catalytic site before the rate-determining step (RDS) is considered a central issue in the strategy, which can optimize the overall catalytic kinetics by avoiding competition from other reaction intermediates on the active site. Herein, the kinetic energy barrier of the O-O coupling for as-prepared sulfated Co-NiFe-LDH nanosheets is significantly reduced, resulting in the formation of M-OOH on the active site at low overpotential, which is directly confirmed by in situ Raman and charge transfer fitting results. Moreover, catalysts constructed from active sites of highly efficient intermediates make a reliable model for studying the mechanism of the OER in proton transfer restriction. In weakly alkaline environments, a sequential proton-electron transfer (SPET) mechanism replaces the concerted proton-electron transfer (CPET) mechanism, and the proton transfer step becomes the RDS; high-speed consumption of reaction intermediates (M-OOH) induces sulfated Co-NiFe-LDH to exhibit excellent kinetics.
Collapse
Affiliation(s)
- Chen Qiao
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- MOE Key Laboratory of Cluster Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Zahid Usman
- Department of Physics, Division of Science and Technology, University of Education Lahore, Lahore 54000, Pakistan
| | - Jie Wei
- Institute of Materials Research and Shenzhen Geim Graphene Research Centre, Tsinghua Shenzhen Internation-al Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Lin Gan
- Institute of Materials Research and Shenzhen Geim Graphene Research Centre, Tsinghua Shenzhen Internation-al Graduate School, Tsinghua University, Shenzhen 518055, People's Republic of China
| | - Jianhua Hou
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225000, People's Republic of China
| | - Yingying Hao
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Youqi Zhu
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Jiatao Zhang
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, People's Republic of China
- MOE Key Laboratory of Cluster Science, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| | - Chuanbao Cao
- Research Center of Materials Science, Beijing Key Laboratory of Construction Tailorable Advanced Functional Materials and Green Applications, Beijing Institute of Technology, Beijing 100081, People's Republic of China
| |
Collapse
|
3
|
Liu Y, Chen Y, Mu X, Wu Z, Jin X, Li J, Xu Y, Yang L, Xi X, Jang H, Lei Z, Liu Q, Jiao S, Yan P, Li X, Cao R. Spinel-Anchored Iridium Single Atoms Enable Efficient Acidic Water Oxidation via Intermediate Stabilization Effect. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Affiliation(s)
- Yang Liu
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yawei Chen
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xulin Mu
- Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing 100124, China
| | - Zhongyi Wu
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xu Jin
- Research Center of New Energy, Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
| | - Jianming Li
- Research Center of New Energy, Research Institute of Petroleum Exploration and Development (RIPED), PetroChina, Beijing 100083, China
| | - Yanzhi Xu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Li Yang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Xiaoke Xi
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Haeseong Jang
- Department of Advanced Materials Engineering, Chung-Ang University, 4726, Seodong-daero, Daedeok-myeon, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - Zhanwu Lei
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Shuhong Jiao
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Pengfei Yan
- Beijing Key Laboratory of Microstructure and Properties of Solids, Beijing University of Technology, Beijing 100124, China
| | - Xiyu Li
- University of Science and Technology of China, Hefei 230026, China
- Songshan Lake Materials Laboratory, Dongguan 523808, China
| | - Ruiguo Cao
- Hefei National Laboratory for Physical Science at the Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
4
|
Li W, Fu W, Bai S, Huang H, He X, Ma W, Zhang H, Wang Y. Inspired electrocatalytic performance by unique amorphous PdCu nanoparticles on black phosphorus. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.142082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
5
|
Liu J, Qiao W, Zhu Z, Hu J, Xu X. Chameleon-Like Reconstruction on Redox Catalysts Adaptive to Alkali Water Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202434. [PMID: 35775979 DOI: 10.1002/smll.202202434] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Pre-catalyst reconstruction in electrochemical processes has recently attracted intensive attention with mechanistic potentials to uncover really active species and catalytic mechanisms and advance targeted catalyst designs. Here, nickel-molybdenum oxysulfide is deliberately fabricated as pre-catalyst to present a comprehensive study on reconstruction dynamics for the oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkali water electrolysis. Operando Raman spectroscopy together with X-ray photoelectron spectroscopy and electron microscopy capture dynamic reconstruction including geometric, component and phase evolutions, revealing a chameleon-like reconstruction self-adaptive to OER and HER demands under oxidative and reductive conditions, respectively. The in situ generated active NiOOH and Ni species with ultrafine and porous textures exhibit superior OER and HER performance, respectively, and an electrolyzer with such two reconstructed electrodes demonstrates steady overall water splitting with an extraordinary 80% electricity-to-hydrogen (ETH) energy conversion efficiency. This work highlights dynamic reconstruction adaptability to electrochemical conditions and develops an automatic avenue toward the targeted design of advanced catalysts.
Collapse
Affiliation(s)
- Jiao Liu
- School of Physics Science & Technology, and Chemistry Interdisciplinary Research Center, Yangzhou University, Yangzhou, 225002, China
| | - Wen Qiao
- College of Electronics and Information, Hangzhou Dianzi University, Hangzhou, 310018, China
| | - Zexuan Zhu
- School of Physics Science & Technology, and Chemistry Interdisciplinary Research Center, Yangzhou University, Yangzhou, 225002, China
| | - Jingguo Hu
- School of Physics Science & Technology, and Chemistry Interdisciplinary Research Center, Yangzhou University, Yangzhou, 225002, China
| | - Xiaoyong Xu
- School of Physics Science & Technology, and Chemistry Interdisciplinary Research Center, Yangzhou University, Yangzhou, 225002, China
| |
Collapse
|
6
|
Das TK, Ping T, Mohapatra M, Anwar S, Chinnakonda GS, Jena BK. Concerted effect of Ni-in and S-out on ReS2 nanostructures towards high-efficiency oxygen evolution reaction. Chem Commun (Camb) 2022; 58:3689-3692. [DOI: 10.1039/d1cc07030d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a one-step hydrothermal reaction is developed to synthesize Ni-doped ReS2 nanostructure with the sulphur defect. The material exhibited excellent OER activity with a current density of 10 mAcm-2 at...
Collapse
|