1
|
Lin EZ, Zhao W, Shi JK, Sun YW, Xiong X, Qi X, Sun X, Li BJ. Construction of Nonadjacent Stereocenters Through Iridium-Catalyzed Desymmetric Hydroheteroarylation of Cyclopentenes. Angew Chem Int Ed Engl 2025:e202501641. [PMID: 40240307 DOI: 10.1002/anie.202501641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/10/2025] [Accepted: 04/15/2025] [Indexed: 04/18/2025]
Abstract
Transition metal-catalyzed direct addition of (hetero)aryl C─H bond to an alkene provides an expedited route to construct benzylic stereocenter from readily available arene and alkene feedstocks with complete atom-economy. However, creation of more than one stereocenter through enantioselective C─H (hetero)arylation remains a challenging goal. Here we report an iridium-catalyzed desymmetric hydroheteroarylation of cyclopentenes to construct 1,3-nonadjacent stereocenters. A series of heteroaryl C─H bonds were cleaved site-selectively and added regio- and enantioselectively to an unactivated alkene containing an amide coordinating group, delivering valuable enantioenriched cyclopentane scaffolds containing 1,3-tertiary-tertiary or 1,3-quaternary-tertiary stereocenters with exclusive diastereoselectivity and excellent enantioselectivity.
Collapse
Affiliation(s)
- En-Ze Lin
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Wei Zhao
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Jun-Kai Shi
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yu-Wen Sun
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Xianrui Xiong
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiaotian Qi
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xin Sun
- Henan Key Laboratory of Crystalline Molecular Functional Materials, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Bi-Jie Li
- Center of Basic Molecular Science (CBMS), Department of Chemistry, Tsinghua University, Beijing, 100084, China
- Stake Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
2
|
Cao W, Guo J, Wang X. Probing the Mechanism of Ni-Catalyzed Asymmetric Reppe Carbonylation of Cyclopropenes with CO and ROH. J Org Chem 2024; 89:12858-12863. [PMID: 39188096 DOI: 10.1021/acs.joc.4c01553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
There is ongoing intense interest in catalysis with the Earth-abundant metal nickel. This DFT study reveals a plausible mechanism for the first Ni-catalyzed asymmetric Reppe carbonylation of cyclopropenes with carbon monoxide and phenols/alcohols. The RO-H bond undergoes a distinct heterolytic cleavage rather than the proposed oxidative addition, transferring a proton to a nickel-bound anionic carbon atom in a stereoselective manner. This and other novel insights gained can have implications for developing new asymmetric Reppe reactions.
Collapse
Affiliation(s)
- Wanxin Cao
- Institute for Innovative Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Jiandong Guo
- Institute for Innovative Materials and Energy, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Xiaotai Wang
- Department of Chemistry, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| |
Collapse
|
3
|
Wang J, Yang Y, Liu C, Zhang D. Theoretical Insight into the Palladium-Catalyzed Prenylation and Geranylation of Oxindoles with Isoprene. Inorg Chem 2024; 63:4855-4866. [PMID: 38447568 DOI: 10.1021/acs.inorgchem.3c03637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
This work presents a comprehensive mechanistic study of the ligand-controlled palladium-catalyzed prenylation (with C5 added) and geranylation (with C10 added) reactions of oxindole with isoprene. The calculated results indicate that the prenylation with the bis-phosphine ligand and geranylation with the monophosphine ligand fundamentally share a common mechanism. This mechanism involves the formation of two crucial species: a η3-allyl-Pd(II) cation and an oxindole carbon anion. Furthermore, the reactions necessitate the assistance of a second oxindole molecule, which serves as a Brønsted acid, providing a proton to generate the oxindole nitrogen anion. The oxindole nitrogen anion then acts as a Brønsted base, abstracting a C-H proton from another oxindole molecule to form an oxindole carbon anion. These mechanistic details differ significantly from those proposed in the experimental work. The present calculations do not support the presence of the Pd-H species and the η3, η3-diallyl-Pd(II) intermediate, which were previously suggested in experiments. The theoretical results rationalize the experimental finding that the bis-phosphine ligand favors the prenylation of oxindole, while the monophosphine ligand enables the geranylation of oxindole.
Collapse
Affiliation(s)
- Jinzhao Wang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yiying Yang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Chengbu Liu
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Dongju Zhang
- Key Lab of Colloid and Interface Chemistry, Ministry of Education, Institute of Theoretical Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
4
|
Wang K, Xu H, Dang Y. Understanding the mechanism and origins of stereoconvergence in nickel-catalyzed hydroarylation of 1,3-dienes with aryl boronates. Dalton Trans 2023; 52:4849-4855. [PMID: 36939628 DOI: 10.1039/d3dt00165b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Nickel-catalyzed stereoselective hydroarylation is one of the most efficient methods to access functionalized arenes. Herein, computational studies have been applied to reveal the mechanism and origins of ligand-controlled enantioselectivity of Ni-catalyzed hydroarylation of 1,3-dienes using ethanol as the hydrogen source. DFT calculations show that the hydroarylation of (E)-diene takes place via concerted hydronickelation aided by boronate leading to an alkylnickel(II) intermediate, which further undergoes transmetallation and C-C reductive elimination to deliver the final chiral alkylarene. The hydronickelation is found to be the rate-determining step and is irreversible. The enantioselectivity is dominated by the transmetallation step, in which the ligand-substrate interactions are analyzed to unveil the source of stereocontrol. Besides, mechanistic studies demonstrate that the (Z)-diene initially reacts to offer a (S)-Z-alkyl-Ni(II) species, which preferably undergoes facile isomerization via σ-π-σ-π-σ interconversion to the (R)-E-alkyl-Ni(II) complex rather than the transmetallation step, thus ultimately generating the same (R)-alkylarene product as (E)-diene. Overall, the mechanistic understanding will be useful for the further advancement of asymmetric hydroarylation of dienes.
Collapse
Affiliation(s)
- Keke Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
5
|
Ma S, Fan H, Day CS, Xi Y, Hartwig JF. Remote Hydroamination of Disubstituted Alkenes by a Combination of Isomerization and Regioselective N-H Addition. J Am Chem Soc 2023; 145:10.1021/jacs.2c13054. [PMID: 36780535 PMCID: PMC11620753 DOI: 10.1021/jacs.2c13054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Remote hydrofunctionalizations of alkenes incorporate functional groups distal to existing carbon-carbon double bonds. While remote carbonylations are well-known, remote hydrofunctionalizations are most common for addition of relatively nonpolar B-H, Si-H, and C-H bonds with alkenes. We report a system for the remote hydroamination of disubstituted alkenes to functionalize an alkyl chain selectively at the subterminal, unactivated, methylene position. Critical to the high regioselectivity and reaction rates are the electronic properties of the substituent on the amine and the development of the ligand DIP-Ad-SEGPHOS by evaluating the steric and electronic effects of ligand modules on reactivity and selectivity. The remote hydroamination is compatible with a broad scope of alkenes and aminopyridines and enables the regioconvergent synthesis of amines from an isomeric mixture of alkenes. The products can be derivatized by nucleophilic aromatic substitution on the amino substituent with a variety of nucleophiles.
Collapse
Affiliation(s)
- Senjie Ma
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Haoyu Fan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Craig S Day
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yumeng Xi
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John F Hartwig
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Division of Chemical Sciences, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
6
|
Ghosh T, Bhakta S. Nickel-Catalyzed Hydroarylation Reaction: A Useful Tool in Organic Synthesis. Org Chem Front 2022. [DOI: 10.1039/d2qo00826b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This article describes the recent advances in the field of nickel-catalyzed hydroarylation reaction of alkenes, alkynes, and arenes. All reactions proceeded either through internal hydride transfer or in presence of...
Collapse
|