1
|
Hu K, Li Q, Ji X. Polymer Entanglement-Induced Hydrogel Adhesion. Gels 2024; 10:822. [PMID: 39727580 DOI: 10.3390/gels10120822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 12/05/2024] [Accepted: 12/11/2024] [Indexed: 12/28/2024] Open
Abstract
Hydrogels are widely used in the field of adhesive materials. However, hydrogel adhesion has previously required the covalent graft of supramolecular groups on polymeric chains. In contrast to that, here, a hydrogel adhesion induced by covalent polymer entanglement between two hydrogel networks was reported. Hydrogels G1 and G2 contain the monomers M1, with diazonium groups, and M2, with sulfonate groups, respectively. When the two hydrogels come into contact, the monomers diffuse into each other's networks and assemble into supramolecular polymers (SPs) based on electrostatic interactions, threading the two hydrogel networks. Subsequently, SPs convert into covalent polymers (CPs) under UV light stimulation due to the reaction between the diazonium groups and sulfonate groups, leading to the entanglement of the two hydrogel networks and the production of an adhesive effect. This finding provides a novel strategy for hydrogel adhesion.
Collapse
Affiliation(s)
- Kai Hu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, China
| | - Qingyun Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaofan Ji
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Zhu B, Tan D, Xiao K, Shi Z, Li G, Lei Y, Chen D, Liu S, Xue L. Micropillar with Radial Gradient Modulus Enables Robust Adhesion and Friction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310887. [PMID: 38409520 DOI: 10.1002/smll.202310887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/08/2024] [Indexed: 02/28/2024]
Abstract
The gradient modulus in beetle setae plays a critical role in allowing it to stand and walk on natural surfaces. Mimicking beetle setae to create a modulus gradient in microscale, especially in the direction of setae radius, can achieve reliable contact and thus strong adhesion. However, it remains highly challenging to achieve modulus gradient along radial directions in setae-like structures. Here, polydimethylsiloxane (PDMS) micropillar with radial gradient modulus, (termed GM), is successfully constructed by making use of the polymerization inhibitor in the photosensitive resin template. GM gains adhesion up to 84 kPa, which is 2.3 and 4.7 times of soft homogeneous micropillars (SH) and hard homogeneous micropillars (HH), respectively. The radial gradient modulus facilitates contact formation on various surfaces and shifts stress concentration from contact perimeter to the center, resulting in adhesion enhancement. Meanwhile, GM achieves strong friction of 8.1 mN, which is 1.2 and 2.6 times of SH and HH, respectively. Moreover, GM possesses high robustness, maintaining strong adhesion and friction after 400 cycles of tests. The work here not only provides a robust structure for strong adhesion and friction, but also establishes a strategy to create modulus gradient at micron-scale.
Collapse
Affiliation(s)
- Bo Zhu
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Di Tan
- Nanotechnology Center, School of Fashion and Textiles, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, China
| | - Kangjian Xiao
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Zhekun Shi
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Gang Li
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Yifeng Lei
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Daobing Chen
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Sheng Liu
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| | - Longjian Xue
- The Institute of Technological Science, School of Power and Mechanical Engineering, Wuhan University, Wuhan, 430072, China
| |
Collapse
|