1
|
Horsley Downie TM, Velić A, Coelho LA, Wolf R, Scott DJ. Closing the Loop: Low-Waste Phosphorus Functionalization Enabled by Simple Disulfides. CHEMSUSCHEM 2025; 18:e202401895. [PMID: 39526941 PMCID: PMC11960583 DOI: 10.1002/cssc.202401895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 10/30/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
Useful monophosphorus products are obtained from both white and red phosphorus via a simple strategy involving initial oxidation by aryl disulfides followed by quenching with nucleophiles. Direct transformations of elemental phosphorus are usually very challenging, forcing chemists to instead rely on inefficient and hazardous multi-step methods. However, here they are achieved using inexpensive and easy-to-handle reagents, providing access to diverse P-C, P-N and P-O bonded products in good yields. By isolating the thiolate byproducts of these reactions, a simple, closed loop can be achieved that produces only minimal, benign waste byproducts, in contrast to other direct methods. This closed loop can even be elaborated into a true (electro)catalytic cycle, which is extremely rare in the field of elemental phosphorus functionalization.
Collapse
Affiliation(s)
| | - Ajdin Velić
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Luis A. Coelho
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
- Department of ChemistryUniversity of Bath, Claverton DownBathBA2 7AYUK
| | - Robert Wolf
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | - Daniel J. Scott
- Department of ChemistryUniversity of Bath, Claverton DownBathBA2 7AYUK
| |
Collapse
|
2
|
Chai Y, Tian YL, Jia JH, Wang XC, Quan ZJ. Palladium-catalyzed coupling of aryl sulfonium salts with [TBA][P(SiCl 3) 2] for the construction of tertiary phosphines. Chem Commun (Camb) 2025; 61:5138-5141. [PMID: 40066840 DOI: 10.1039/d5cc00716j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
We present a strategy for the synthesis of triarylphosphines via palladium-catalyzed C-P cross-coupling reactions of aryl sulfonium salts with [TBA][P(SiCl3)2]. This method utilizes [TBA][P(SiCl3)2], a phosphorus derivative of phosphoric acid, as the phosphorus source. This approach circumvents the hazards and intricate pathways associated with white phosphorus.
Collapse
Affiliation(s)
- Yao Chai
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Techno-logical Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Ya-Ling Tian
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Techno-logical Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Jin-Hong Jia
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Techno-logical Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Techno-logical Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Techno-logical Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| |
Collapse
|
3
|
Xiao Y, Yang X, Li H, Yin Y, Du J, Liang J, Duan W, Yu L. Palladium-Catalyzed Coupling of Aryl Chlorides with Secondary Phosphines to Construct Unsymmetrical Tertiary Phosphines. Org Lett 2024; 26:10564-10569. [PMID: 39611234 DOI: 10.1021/acs.orglett.4c03951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The functionalization of the C-Cl bond in unactivated aryl chlorides under mild conditions presents a significant challenge. We disclose a general protocol for constructing both partially and entirely unsymmetrical tertiary phosphines through the Pd/keYPhos-catalyzed coupling of aryl chlorides with secondary phosphines under mild conditions. The reaction exhibits excellent functional group tolerance and broad substrate scopes. Furthermore, the rapid synthesis of ligands and luminescent compound sTPPs, alongside gram-scale systhesis, demonstrates the practical applicability of this method.
Collapse
Affiliation(s)
- Yuxuan Xiao
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Xun Yang
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Haiyan Li
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Ying Yin
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Jiahui Du
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Jing Liang
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Wengui Duan
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| | - Lin Yu
- School of Chemistry and Chemical Engineering, Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development, Guangxi University, Nanning 530004, Guangxi, P. R. China
| |
Collapse
|
4
|
Peng J, Wang A, Liu Y, Chen F, Tang G, Zhao Y. Selective Functionalization of White Phosphorus with Alkyl Bromides under Photocatalytic Conditions: A Chlorine-Free Protocol to Dialkyl and Trialkyl Phosphine Oxides. Org Lett 2024; 26:9316-9321. [PMID: 39445636 DOI: 10.1021/acs.orglett.4c03494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
A novel and efficient method for the direct selective alkylation of white phosphorus (P4) with alkyl bromides has been developed, utilizing 4DPAIPN as the photocatalyst and Hantzsch ester as the reductant. This method facilitates the synthesis of structurally diverse dialkyl phosphine oxides in good yields, offering a streamlined alternative to the traditional stepwise approach of chlorinating P4 with Cl2 and subsequently displacing the chlorine atom. Noteworthy features of this reaction include excellent product selectivity, remarkable functional group tolerance, and a broad substrate scope. Additionally, this method is effective for the synthesis of trialkyl phosphine oxides.
Collapse
Affiliation(s)
- Jialiang Peng
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - An Wang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Yan Liu
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Fushan Chen
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| | - Guo Tang
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, College of Chemistry, Xinjiang University, Urumqi, 830017, Xinjiang, China
| | - Yufen Zhao
- Department of Chemistry, College of Chemistry and Chemical Engineering, and the Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
5
|
Cammarata J, Westermair FF, Coburger P, Duvinage D, Janssen M, Uttendorfer MK, Beckmann J, Gschwind RM, Wolf R, Scott DJ. Unravelling White Phosphorus: Experimental and Computational Studies Reveal the Mechanisms of P 4 Hydrostannylation. Angew Chem Int Ed Engl 2024; 63:e202408423. [PMID: 38946592 DOI: 10.1002/anie.202408423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
The hydrostannylation of white phosphorus (P4) allows this crucial industrial precursor to be easily transformed into useful P1 products via direct, 'one pot' (or even catalytic) procedures. However, a thorough mechanistic understanding of this transformation has remained elusive, hindering attempts to use this rare example of successful, direct P4 functionalization as a model for further reaction development. Here, we provide a deep and generalizable mechanistic picture for P4 hydrostannylation by combining DFT calculations with in situ 31P NMR reaction monitoring and kinetic trapping of previously unobservable reaction intermediates using bulky tin hydrides. The results offer important insights into both how this reaction proceeds and why it is successful and provide implicit guidelines for future research in the field of P4 activation.
Collapse
Affiliation(s)
- Jose Cammarata
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Franz F Westermair
- Institute of Organic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Peter Coburger
- TU Munich, Lichtenbergstraße 4, 85748, Garching, Germany
| | - Daniel Duvinage
- Institute of Inorganic Chemistry and Crystallography, University of Bremen, Leobener Straße 7, 28359, Bremen, Germany
| | - Marvin Janssen
- Institute of Inorganic Chemistry and Crystallography, University of Bremen, Leobener Straße 7, 28359, Bremen, Germany
| | - Maria K Uttendorfer
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Jens Beckmann
- Institute of Inorganic Chemistry and Crystallography, University of Bremen, Leobener Straße 7, 28359, Bremen, Germany
| | - Ruth M Gschwind
- Institute of Organic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Robert Wolf
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Daniel J Scott
- Department of Chemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
6
|
Gan Z, Chen J, Wang H, Xue Z, Chen Z, Zhang Y, Wang L, Zi H, Liu S, Shi L, Jin Y. Photoinduced Phosphoniumation of Aryl Halides and Arylthianthrenium Salts via an Electron Donor-Acceptor Complex. Org Lett 2024; 26:7751-7756. [PMID: 39235211 DOI: 10.1021/acs.orglett.4c02909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Owing to their remarkable practicality and utility, phosphonium salts have attracted substantial interest and are widely applied in critical areas, such as medicine, materials science, and catalysis. Herein, we developed a facile and photocatalyst/metal-free synthetic strategy for the preparation of phosphonium salts utilizing aryl halides/arylthianthrenium salts as aryl radical precursors. This approach is disclosed to undergo an efficient light-induced electron donor-acceptor pathway, facilitating the synthesis of a structurally diverse range of phosphonium salts.
Collapse
Affiliation(s)
- Ziyu Gan
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Jiajin Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Han Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Zhiyan Xue
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Ziyang Chen
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Yongqiang Zhang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Lifang Wang
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Hui Zi
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Shuyang Liu
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Lei Shi
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| | - Yunhe Jin
- State Key Laboratory of Fine Chemicals, School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, People's Republic of China
| |
Collapse
|
7
|
Gawron M, Rückel J, Wolf R. Photocatalytic functionalization of white phosphorus with aryl bromides and chlorides. Chem Commun (Camb) 2024; 60:9777-9780. [PMID: 39158222 DOI: 10.1039/d4cc02891k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
We report the implementation of a consecutive photoinduced electron transfer (conPET) strategy for the functionalization of white phosphorus (P4) with inexpensive and widely available aryl bromides and chlorides. By employing a well-known acridinium-based photocatalyst under near-UV irradiation, this protocol gives direct access to valuable triarylphosphines and tetraarylphosphonium salts. The reaction mechanism is elucidated by NMR spectroscopic studies and model reactions.
Collapse
Affiliation(s)
- Martin Gawron
- Universität Regensburg, Institut für Anorganische Chemie, 93040 Regensburg, Germany.
| | - Jannes Rückel
- Universität Regensburg, Institut für Anorganische Chemie, 93040 Regensburg, Germany.
| | - Robert Wolf
- Universität Regensburg, Institut für Anorganische Chemie, 93040 Regensburg, Germany.
| |
Collapse
|
8
|
Chen Y, Liu W, Huangfu X, Wei J, Yu J, Zhang WX. Direct Synthesis of Phosphoryltriacetates from White Phosphorus via Visible Light Catalysis. Chemistry 2024; 30:e202302289. [PMID: 37927193 DOI: 10.1002/chem.202302289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/01/2023] [Accepted: 11/03/2023] [Indexed: 11/07/2023]
Abstract
Organophosphorus compounds (OPCs) are widely used in many fields. However, traditional synthetic routes in the industry usually involve multistep and hazardous procedures. Therefore, it's of great significance to construct such compounds in an environmentally-friendly and facile way. Herein, a photoredox catalytic method has been developed to construct novel phosphoryltriacetates. Using fac-Ir(ppy)3 (ppy=2-phenylpyridine) as the photocatalyst and blue LEDs (456 nm) as the light source, white phosphorus can react with α-bromo esters smoothly to generate phosphoryltriacetates in moderate to good yields. This one-step approach features mild reaction conditions and simple operational process without chlorination.
Collapse
Affiliation(s)
- Yu Chen
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Wei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Xinlei Huangfu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Jiangxi Yu
- Hunan Provincial Key Laboratory of Functional Metal-Organic Compounds, Key Laboratory of Organometallic New Materials (Hengyang Normal University), College of Hunan Province, Hengyang Normal University, Hengyang, 421008, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-earth Materials Chemistry and Applications &, Key Laboratory of Bioorganic Chemistry and, Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
9
|
Tian X, Liu Y, Yakubov S, Schütte J, Chiba S, Barham JP. Photo- and electro-chemical strategies for the activations of strong chemical bonds. Chem Soc Rev 2024; 53:263-316. [PMID: 38059728 DOI: 10.1039/d2cs00581f] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
The employment of light and/or electricity - alternatively to conventional thermal energy - unlocks new reactivity paradigms as tools for chemical substrate activations. This leads to the development of new synthetic reactions and a vast expansion of chemical spaces. This review summarizes recent developments in photo- and/or electrochemical activation strategies for the functionalization of strong bonds - particularly carbon-heteroatom (C-X) bonds - via: (1) direct photoexcitation by high energy UV light; (2) activation via photoredox catalysis under irradiation with relatively lower energy UVA or blue light; (3) electrochemical reduction; (4) combination of photocatalysis and electrochemistry. Based on the types of the targeted C-X bonds, various transformations ranging from hydrodefunctionalization to cross-coupling are covered with detailed discussions of their reaction mechanisms.
Collapse
Affiliation(s)
- Xianhai Tian
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Yuliang Liu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Shahboz Yakubov
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Jonathan Schütte
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| | - Shunsuke Chiba
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.
| | - Joshua P Barham
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany.
| |
Collapse
|
10
|
Liu Y, Chen X, Yu B. Sustainable Photo- and Electrochemical Transformation of White Phosphorous (P 4 ) into P 1 Organo-Compounds. Chemistry 2023; 29:e202302142. [PMID: 37671623 DOI: 10.1002/chem.202302142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/07/2023]
Abstract
Elemental white phosphorous (P4 ) is a crucial feedstock for the entire phosphorus-derived chemical industry, serving as a common precursor for the ultimate preparation of high-grade monophosphorus (P1 ) fine chemicals. However, the corresponding manufacturing processes generally suffer from a deep reliance on hazardous reagents, inputs of immense energy, emissions of toxic pollutants, and the generation of substantial waste, which have negative impacts on the environment. In this context, sustainability and safety concerns provide a consistent impetus for the urgent overall improvement of phosphorus cycles. In this Concept, we present an overview of the most recent growth in photo- and electrochemical synthesis of P1 organo-compounds from P4 , with special emphasis on sustainable features. The key aspects of innovations regarding activation mode and mechanism have been comprehensively analyzed. A preliminary look at the possible future direction of development is also provided.
Collapse
Affiliation(s)
- Yan Liu
- Henan International Joint Laboratory of Rare Earth Composite Material, College of Materials Engineering, Henan University of Engineering, Zhengzhou, 451191, P. R. China
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
- National Key Laboratory of Cotton Bio Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, P. R. China
| | - Xiaolan Chen
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Bing Yu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
11
|
Huangfu X, Liu W, Xu H, Wang Z, Wei J, Zhang WX. Photochemical Benzylation of White Phosphorus. Inorg Chem 2023; 62:12009-12017. [PMID: 37458455 DOI: 10.1021/acs.inorgchem.3c01475] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Organophosphorus compounds (OPCs) have wide application in organic synthesis, material sciences, and drug discovery. Generally, the vast majority of phosphorus atoms in OPCs are derived from white phosphorus (P4). However, the large-scale preparation of OPCs mainly proceeds through the multistep and environmentally toxic chlorine route from P4. Herein, we report the direct benzylation of P4 promoted by visible light. The cheap and readily available benzyl bromide was used as a benzylation reagent, and tetrabenzylphosphonium bromide was directly synthesized from P4. In addition, the metallaphotoredox catalysis strategy was applied to functionalize P4 for the first time, which significantly improved the application range of the substituted benzyl bromide.
Collapse
Affiliation(s)
- Xinlei Huangfu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Hanhua Xu
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhongzhen Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Junnian Wei
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory of Rare-Earth Materials Chemistry and Applications & Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
12
|
Luo H, Li M, Wang XC, Quan ZJ. Direct synthesis of phosphorotrithioates from [TBA][P(SiCl 3) 2] and disulfides. Org Biomol Chem 2023; 21:2499-2503. [PMID: 36880434 DOI: 10.1039/d2ob02285k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Sulfur-containing organophosphorus molecules have played a pivotal role in organic synthesis, pharmaceutical pesticides and functional materials, thereby motivating researchers worldwide to establish S-P bonds from more environmentally friendly phosphorus sources. In this study, a novel method was developed for constructing S-P bonds, specifically by reacting the inorganic phosphorus derivative TBA[P(SiCl3)2] with sulfur-containing compounds under mild conditions. This method demonstrates the advantages of low energy consumption, mild reaction conditions and environmental friendliness. Moreover, this protocol-as a green synthesis method to replace the use of white phosphorus in the production of organophosphorus compounds (OPCs)-achieved the functional conversion of "inorganic phosphorus to organic phosphorus", in line with the national green development strategy.
Collapse
Affiliation(s)
- Hui Luo
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Ming Li
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Gansu International Scientific and Technological Cooperation Base of Water-Retention Chemical Functional Materials, Lanzhou, Gansu 730070, China.
| |
Collapse
|
13
|
Cammarata J, Scott DJ, Wolf R. Hydrostannylation of Red Phosphorus: A Convenient Route to Monophosphines. Chemistry 2022; 28:e202202456. [PMID: 36044241 PMCID: PMC10092039 DOI: 10.1002/chem.202202456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Indexed: 11/11/2022]
Abstract
The preparation of valuable and industrially relevant organophosphorus compounds currently depends on indirect multistep procedures involving difficult-to-handle white phosphorus as a common P atom source. Herein, we report a practical and versatile method for the synthesis of a variety of monophosphorus compounds directly from the bench-stable allotrope red phosphorus (Pred ). The relatively inert Pred was productively functionalised by using the cheap and readily available radical reagent tri-n-butyltin hydride, and subsequent treatment with electrophiles yields useful P1 compounds. Remarkably, these transformations require only modest inert-atmosphere techniques and use only reagents that are inexpensive and commercially available, making this a convenient and practical methodology accessible in most laboratory settings.
Collapse
Affiliation(s)
- Jose Cammarata
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| | | | - Robert Wolf
- Institute of Inorganic ChemistryUniversity of Regensburg93040RegensburgGermany
| |
Collapse
|
14
|
Till M, Cammarata J, Wolf R, Scott DJ. Photocatalytic stannylation of white phosphorus. Chem Commun (Camb) 2022; 58:8986-8989. [PMID: 35861572 PMCID: PMC9362875 DOI: 10.1039/d2cc03474c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Organophosphorus compounds (OPCs) are highly important chemicals, finding numerous applications in both academia and industry. Herein we describe a simple photocatalytic method for the stannylation of white phosphorus (P4) using a cheap, commercially-available distannane, (Bu3Sn)2, and anthraquinone as a simple photocatalyst. Subsequent ‘one pot’ transformation of the resulting stannylated monophosphine intermediate (Bu3Sn)3P provides direct, convenient and versatile access to valuable OPCs such as acylated phosphines and tetraalkylphosphonium salts. A simple, mechanistically unique photochemical procedure is reported for the efficient, direct, catalytic stannylation of P4 and ‘one pot’ transformation into valuable monophosphorus compounds.![]()
Collapse
Affiliation(s)
- Marion Till
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany.
| | - Jose Cammarata
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany.
| | - Robert Wolf
- University of Regensburg, Institute of Inorganic Chemistry, 93040, Regensburg, Germany.
| | - Daniel J Scott
- University of Oxford, Department of Chemistry, OX1 3TA, Oxford, UK.
| |
Collapse
|
15
|
Scott DJ. Recent Breakthroughs in P 4 Chemistry: Towards Practical, Direct Transformations into P 1 Compounds. Angew Chem Int Ed Engl 2022; 61:e202205019. [PMID: 35482300 PMCID: PMC9401861 DOI: 10.1002/anie.202205019] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Indexed: 01/11/2023]
Abstract
For several decades, academic researchers have been intensively studying the chemistry of white phosphorus (P4 ) in the hope of developing direct methods for its transformation into useful P-containing products. This would bypass the hazardous, multistep procedures currently relied on by industry. However, while academically interesting P4 activation reactions have become well established, their elaboration into useful, general synthetic procedures has remained out of reach. Very recently, however, a series of independent reports has begun to change this state of affairs. Each shows how relatively simple and practical synthetic methods can be used to access academically or industrially relevant P1 compounds from P4 directly, in "one pot" or even in a catalytic fashion. These reports mark a step change in the field of P4 chemistry, and suggest its possible transition from an area of largely academic interest to one with the promise of true synthetic relevance.
Collapse
Affiliation(s)
- Daniel J. Scott
- Department of ChemistryChemistry Research LaboratoryUniversity of Oxford12 Mansfield RoadOxfordOX1 3TAUK
| |
Collapse
|
16
|
Zhang Y, Cao Y, Chi Y, Chen S, Zeng X, Liu Y, Tang G, Zhao Y. Formation of N−P(O)−S Bonds from White Phosphorus via a Four‐Component Reaction. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Yue Zhang
- Department of Chemistry College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Yinwei Cao
- Department of Chemistry College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Yangyang Chi
- Department of Chemical Biology College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Shuanghui Chen
- Department of Chemistry College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Xiangzhe Zeng
- Department of Chemistry College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Yan Liu
- Department of Chemical Biology College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Guo Tang
- Department of Chemistry College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| | - Yufen Zhao
- Department of Chemistry College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
- Department of Chemical Biology College of Chemistry and Chemical Engineering and the Key Laboratory for Chemical Biology of Fujian Province Xiamen University Xiamen Fujian 361005 People's Republic of China
| |
Collapse
|
17
|
Scott DJ. Recent Breakthroughs in P4 Chemistry: Towards Practical, Direct Transformations into P1 Compounds. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Daniel J Scott
- University of Oxford Department of Chemistry Chemistry Research Laboratory12 Mansfield Road OX1 3TA OXFORD UNITED KINGDOM
| |
Collapse
|
18
|
Mei Y, Yan Z, Liu LL. Facile Synthesis of the Dicyanophosphide Anion via Electrochemical Activation of White Phosphorus: An Avenue to Organophosphorus Compounds. J Am Chem Soc 2022; 144:1517-1522. [PMID: 35041429 DOI: 10.1021/jacs.1c11087] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Organophosphorus compounds (OPCs) have gained tremendous interest in the past decades due to their wide applications ranging from synthetic chemistry to materials and biological sciences. We describe herein a practical and versatile approach for the transformation of white phosphorus (P4) into useful OPCs with high P atom economy via a key bridging anion [P(CN)2]-. This anion can be prepared on a gram scale directly from P4 through an electrochemical process. A variety of OPCs involving phosphinidenes, cyclophosphanes, and phospholides have been made readily accessible from P4 in a two-step manner. Our approach has a significant impact on the future preparation of OPCs in laboratory and industrial settings.
Collapse
Affiliation(s)
- Yanbo Mei
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zeen Yan
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Leo Liu
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|