1
|
Yuan Z, Yang X, Lin C, Xiong P, Su A, Fang Y, Chen X, Fan H, Xiao F, Wei M, Qian Q, Chen Q, Zeng L. Progressive activation of porous vanadium nitride microspheres with intercalation-conversion reactions toward high performance over a wide temperature range for zinc-ion batteries. J Colloid Interface Sci 2023; 640:487-497. [PMID: 36871513 DOI: 10.1016/j.jcis.2023.02.112] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023]
Abstract
Rechargeable aqueous zinc-ion batteries have great promise for becoming next-generation storage systems, although the irreversible intercalation of Zn2+ and sluggish reaction kinetics impede their wide application. Therefore, it is urgent to develop highly reversible zinc-ion batteries. In this work, we modulate the morphology of vanadium nitride (VN) with different molar amounts of cetyltrimethylammonium bromide (CTAB). The optimal electrode has porous architecture and excellent electrical conductivity, which can alleviate volume expansion/contraction and allow for fast ion transmission during the Zn2+ storage process. Furthermore, the CTAB-modified VN cathode undergoes a phase transition that provides a better framework for vanadium oxide (VOx). With the same mass of VN and VOx, VN provides more active material after phase conversion due to the molar mass of the N atom being less than that of the O atom, thus increasing the capacity. As expected, the cathode displays an excellent electrochemical performance of 272 mAh g-1 at 5 A g-1, high cycling stability up to 7000 cycles, and excellent performance over a wide temperature range. This discovery creates new possibilities for the development of high-performance multivalent ion aqueous cathodes with rapid reaction mechanisms.
Collapse
Affiliation(s)
- Ziyan Yuan
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China
| | - Xuhui Yang
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China
| | - Chuyuan Lin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China
| | - Peixun Xiong
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Anmin Su
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yixing Fang
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China
| | - Xiaochuan Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China.
| | - Haosen Fan
- College of Materials Science and Metallurgy Engineering, Guizhou University, Guiyang 550025, China
| | - Fuyu Xiao
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China
| | - Mingdeng Wei
- Fujian Provincial Key Laboratory of Electrochemical Energy Storage Materials, Fuzhou University, Fuzhou, Fujian 350002, China
| | - Qingrong Qian
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Weijin Road No. 94, Tianjin 300071, China
| | - Qinghua Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Weijin Road No. 94, Tianjin 300071, China.
| | - Lingxing Zeng
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environment and Resources, Chemistry Post-Doctoral Station, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, China; Fujian Key Laboratory of Pollution Control & Resource Reuse, Fuzhou, Fujian 350007, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Weijin Road No. 94, Tianjin 300071, China.
| |
Collapse
|