1
|
Bao Y, Tang M, Wang Q, Cao ZY, Wang Y, Yuan Z. Visible-Light-Induced Monofluoroalkenylation and gem-Difluoroallylation of Inactivated C(sp 3)-H Bonds via 1,5-Hydrogen Atom Transfer (HAT). J Org Chem 2023; 88:3883-3896. [PMID: 36880346 DOI: 10.1021/acs.joc.3c00144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
The direct monofluoroalkenylation of C(sp3)-H bonds is of great importance and quite challenging. Current methods have been restricted to the monofluoroalkenylation of activated C(sp3)-H bonds. Here, we reported the photocatalyzed C(sp3)-H monofluoroalkenylation of inactivated C(sp3)-H bonds with gem-difluoroalkenes via 1,5-hydrogen atom transfer. This process shows good functional group tolerance, such as halides (F, Cl), nitrile, sulfone, ester, and pyridine, and good γ-selectivity. Moreover, this method succeeds in the photocatalyzed gem-difluoroallylation of inactivated C(sp3)-H with α-trifluoromethyl alkenes.
Collapse
Affiliation(s)
- Yanyang Bao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Meifang Tang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Qing Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Zhong-Yan Cao
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, P. R. China
| | - Yanan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| | - Zheliang Yuan
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Science, Zhejiang Normal University, 688 Yingbin Road, Jinhua 321004, P. R. China
| |
Collapse
|
2
|
Ding H, Zhang S, Sun Z, Ma Q, Li Y, Yuan Y, Jia X. C-H Bond Activation Relay (CHAR) of Proline Ester Derivatives Promoted by In Situ Triarylamine Radical Cation: Selective Synthesis of 4-Bromopyrrole Derivatives. Chemistry 2023; 29:e202203654. [PMID: 36727278 DOI: 10.1002/chem.202203654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/14/2023] [Accepted: 02/01/2023] [Indexed: 02/03/2023]
Abstract
Using the in situ generated triarylamine radical cation as an initiator, the sp3 C-H bond of proline esters was smoothly oxidized and brominated through C-H activation relay (CHAR), giving a series of 4-bromopyrroles in good yields with high regioselectivity. The mechanistic study revealed that the oxidation of the active C-H bond initiated the followed 1,5-HAT and bromination, which provides a new method to realize the functionalization of the remote C-H bond.
Collapse
Affiliation(s)
- Han Ding
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Zheng Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Qiyuan Ma
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Yuemei Li
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| | - Xiaodong Jia
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002, Yangzhou, Jiangsu, P. R. China
| |
Collapse
|
3
|
Lu MZ, Goh J, Maraswami M, Jia Z, Tian JS, Loh TP. Recent Advances in Alkenyl sp 2 C-H and C-F Bond Functionalizations: Scope, Mechanism, and Applications. Chem Rev 2022; 122:17479-17646. [PMID: 36240299 DOI: 10.1021/acs.chemrev.2c00032] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Alkenes and their derivatives are featured widely in a variety of natural products, pharmaceuticals, and advanced materials. Significant efforts have been made toward the development of new and practical methods to access this important class of compounds by selectively activating the alkenyl C(sp2)-H bonds in recent years. In this comprehensive review, we describe the state-of-the-art strategies for the direct functionalization of alkenyl sp2 C-H and C-F bonds until June 2022. Moreover, metal-free, photoredox, and electrochemical strategies are also covered. For clarity, this review has been divided into two parts; the first part focuses on currently available alkenyl sp2 C-H functionalization methods using different alkene derivatives as the starting materials, and the second part describes the alkenyl sp2 C-F bond functionalization using easily accessible gem-difluoroalkenes as the starting material. This review includes the scope, limitations, mechanistic studies, stereoselective control (using directing groups as well as metal-migration strategies), and their applications to complex molecule synthesis where appropriate. Overall, this comprehensive review aims to document the considerable advancements, current status, and emerging work by critically summarizing the contributions of researchers working in this fascinating area and is expected to stimulate novel, innovative, and broadly applicable strategies for alkenyl sp2 C-H and C-F bond functionalizations in the coming years.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Jeffrey Goh
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Manikantha Maraswami
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore
| | - Zhenhua Jia
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jie-Sheng Tian
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, China.,School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 637371, Singapore.,Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|