1
|
Yadav Y, Singh K, Tyagi R, Sagar R. Organobase-catalyzed efficient synthesis of 4-acyl-5-aryl tri-substituted triazole linked N-glycosides as glycohybrids. Org Biomol Chem 2025; 23:2904-2917. [PMID: 39989371 DOI: 10.1039/d4ob01971g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Herein, we report a highly efficient organobase-catalyzed method for the synthesis of fully decorated chiral 4-acyl-5-aryl-trisubstituted-1,2,3-triazole-linked N-glycosidic molecular scaffolds as glycohybrids. This process involves a base-catalyzed 1,3 dipolar cycloaddition reaction, where β-ketoesters react with various glycosyl azides in dimethyl sulfoxide at room temperature, furnishing new glycohybrids in good to excellent yields. This intermolecular reaction is metal-free, exceptionally efficient, versatile, and high-yielding, with a broad substrate scope and remarkable regioselectivity.
Collapse
Affiliation(s)
- Yogesh Yadav
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Kavita Singh
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Rajdeep Tyagi
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| | - Ram Sagar
- Glycochemistry Laboratory, School of Physical Sciences, Jawaharlal Nehru University, New Delhi-110067, India.
| |
Collapse
|
2
|
Jaiswal MK, Yadav MS, Maurya S, Ansari D, Tiwari VK. HFIP-Mediated Synthesis of 4-Aryl- NH-1,2,3-Triazoles and 1,5-Disubstituted 1,2,3-Triazolyl Glycoconjugates. J Org Chem 2024; 89:17213-17227. [PMID: 39509605 DOI: 10.1021/acs.joc.4c01700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
We herein report a multicomponent reaction for the synthesis of N-unsubstituted-1,2,3-triazoles and N-substituted-1,2,3 triazoles from the reaction of aldehydes, nitroalkanes, and sodium azides/glycosyl azides in the presence of 1,1,1,3,3,3-hexafluoroisopropanol, a hydrogen bond-donating reaction medium. This three-component reaction provides a metal-free strategy for sequentially forming one C-C and two C-N bonds in a one-pot fashion. One-pot mild reaction condition, operational simplicity, wide substrate scope, good functional group tolerance, easy purification, high reaction yields, and altogether excellent regioselectivity are the notable advantages of this 1,2,3-triazole-forming protocol. Moreover, this protocol provides practical access to the gram-scale synthesis of potent inhibitors of indoleamine 2,3-dioxygenase 1.
Collapse
Affiliation(s)
- Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Mangal S Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Shristy Maurya
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Danish Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
3
|
Zhan JL, Yuan SL, Wei JS, Zhang MS, Yuan ZY, Wei YX, Meng Q, Zhu L, Lv Y, Li G. Ring-Opening α,β-Difunctionalization of Cyclopropanols with Azides Enables 4-Keto-Functionalized 1,2,3-Triazole Synthesis. Org Lett 2024; 26:9553-9557. [PMID: 39466046 DOI: 10.1021/acs.orglett.4c03571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Selective C-C bond cleavage and transformation of organic small molecules to create products of increased value are one of the central goals in organic chemistry. In this study, we have developed a novel TEMPO-mediated ring-opening α,β-difunctionalization of cyclopropyl alcohols with organic azides to prepare structurally important 4-keto-1,2,3-triazoles under metal- and additive-free conditions. This protocol not only provides a straightforward and efficient method for the synthesis of 4-keto-functionalized 1,2,3-triazoles in one pot but also accomplishes the goal of constructing α,β-double C-N bonds via the ring opening of cyclopropyl alcohols for the first time. Additionally, the application of the skeletons of drugs and natural products and the synthesis of Kv1.5 channel blocker 4u further demonstrate the synthetic potential and practicability of this strategy.
Collapse
Affiliation(s)
- Jun-Long Zhan
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Sheng-Ling Yuan
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Jiang-Shan Wei
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Meng-Shuang Zhang
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Zi-Ying Yuan
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Yu-Xin Wei
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Qiang Meng
- School of Chemistry, Science, Monash University, Wellington Road, Clayton, VIC 3800, Australia
| | - Lin Zhu
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Yunhe Lv
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| | - Gang Li
- Henan Provincial Engineering and Technology Research Center for Precise Synthesis of Fluorine-Containing Drugs, College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang 455000, P. R. China
| |
Collapse
|
4
|
Lin JX, Chen YX, Chien MC, Chen HJ, Lai CH, Liang CF. In Situ-Generated Formamidine as a Carbon/Nitrogen Source for Enaminone Formation: One-Pot Synthesis of Functionalized 4-Acyl-1,2,3-triazoles. J Org Chem 2024; 89:12170-12175. [PMID: 39155458 PMCID: PMC11382154 DOI: 10.1021/acs.joc.4c01054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
N,N-Dimethylformamide was reacted with hexamethyldisilazane to generate an N,N-dimethylformimidamide intermediate; thereafter, a reaction with acetophenones/β-diketones was induced to form enaminones. The one-pot synthetic protocol described in this paper can be applied to synthesize 1,4-disubstituted 1,2,3-triazoles and 1,4,5-trisubstituted 1,2,3-triazoles, in which organic azides are used as substrates under optimized conditions. Furthermore, this protocol uses readily available materials, is nearly free of solvent, can be applied to gram-scale operations, and leads to the formation of structurally diverse products with favorable yields.
Collapse
Affiliation(s)
- Jia-Xin Lin
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - You-Xin Chen
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Min-Cheng Chien
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Hsiang-Jou Chen
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Chian-Hui Lai
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Chien-Fu Liang
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
5
|
Fang R, Zheng L, Chen X, Wang C, Chen Y. An FeCl 3-catalyzed three-component reaction for the synthesis of β-(1,2,3-triazolyl)-ketones using DMF as a one-carbon source. Org Biomol Chem 2024; 22:3866-3870. [PMID: 38646715 DOI: 10.1039/d4ob00207e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
An FeCl3-catalyzed oxidative condensation of NH-1,2,3-triazoles, aryl methyl ketones (or acetophenones) and DMF (N,N-dimethylformamide) for the synthesis of β-(1,2,3-triazolyl)-ketones was developed. DMF serves as a one-carbon source, and the resulting products display diverse reaction selectivity, highlighting the existence of distinct approaches.
Collapse
Affiliation(s)
- Ruilin Fang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Lei Zheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
- Department of Neuropharmacology and Novel Drug Discovery, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xuyang Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Can Wang
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| | - Yunfeng Chen
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, China.
| |
Collapse
|