1
|
Hsu JH, Leung T, Wu YC, Lai CH, El Bakri Y, Chang CF, Chuang TH. Synthesis of Etrasimod (APD334): Al 2O 3-Promoted Decarboxylative Rearrangements of Cyclopentenones with Stereochemical Inversion. J Org Chem 2024; 89:12524-12532. [PMID: 39150357 DOI: 10.1021/acs.joc.4c01463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
This study presents an efficient synthesis pathway for etrasimod, starting from (+)-cis-4-acetoxy-2-cyclopenten-1-ol, yielding 5.6% overall with 98% enantiomeric excess. The crucial intermediate, (4R)-anilinocyclopent-2-enone, was derived from the (S)-alcohol/isocyanate adduct through a concerted, Al2O3-promoted decarboxylative rearrangement, which inverted the configuration. A tetracyclic fused lactam was formed via a one-pot acylation-Michael addition, followed by keto α-arylation. Subsequent removal of the oxo group facilitated the synthesis of cyclopenta[b]indol-3-ylacetic acid through a series of reactions, including methanolysis, indoline oxidation, and hydrolysis.
Collapse
Affiliation(s)
- Ju-Hsuan Hsu
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
| | - TszIn Leung
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
| | - Yang-Chang Wu
- Chinese Medicine Research and Development Center, China Medical University Hospital, Taichung 404394, Taiwan
| | - Chin-Hung Lai
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Chelyabinsk 454080, Russia Federation
| | - Chi-Fen Chang
- Department of Anatomy, School of Medicine, China Medical University, Taichung 40402, Taiwan
| | - Ta-Hsien Chuang
- School of Pharmacy, China Medical University, Taichung 406040, Taiwan
| |
Collapse
|
2
|
Pramanik S, Hazra S, Chatterjee A, Saha J. Hydrogen bonding-promoted tunable approach for access to aza-bicyclo-[3.3.0]octanes and cyclopenta[ b] pyrroles. Chem Commun (Camb) 2024; 60:4922-4925. [PMID: 38629143 DOI: 10.1039/d4cc01065e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
A unified strategy is disclosed that builds on successfully engaging the aniline nitrogen of 1,3-amphoteric γ-aminocyclopentenone for a tandem annulation with electron-poor alkynes, solely assisted by the H-bonding network of HFIP. This metal-free mild strategy provides access to medicinally relevant aza-bicyclo-octanes en route to another important scaffold: cyclopenta[b]pyrrole.
Collapse
Affiliation(s)
- Sourav Pramanik
- Division of Molecular Synthesis and Drug Discovery, Centre of Biomedical Research (CBMR), Lucknow 226014, India
| | - Subhadeep Hazra
- Division of Molecular Synthesis and Drug Discovery, Centre of Biomedical Research (CBMR), Lucknow 226014, India
| | - Ayan Chatterjee
- Division of Molecular Synthesis and Drug Discovery, Centre of Biomedical Research (CBMR), Lucknow 226014, India
| | - Jaideep Saha
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Mohali 160062, India.
| |
Collapse
|
3
|
Werner E, Wiegand M, Moran J, Lebœuf D. Rapid Access to Densely Functionalized Cyclopentenyl Sulfoximines through a Sc-Catalyzed Aza-Piancatelli Reaction. Org Lett 2024. [PMID: 38190622 DOI: 10.1021/acs.orglett.3c04095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
Sulfoximines make up a class of compounds of growing interest for crop science and medicinal chemistry, but methods for directly incorporating them into complex molecular scaffolds are lacking. Here we report a scandium-catalyzed variant of the aza-Piancatelli cyclization that can directly incorporate sulfoximines as nucleophiles rather than the classical aniline substrates. Starting from 2-furylcarbinols and sulfoximines, the reaction provides direct access to 4-sulfoximinocyclopentenones, a new scaffold bearing cyclopentenone and sulfoximine motifs, both of interest for bioactive compounds.
Collapse
Affiliation(s)
- Emilie Werner
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Milena Wiegand
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| | - Joseph Moran
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
- Institut Universitaire de France (IUF), 75005 Paris, France
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - David Lebœuf
- Institut de Science et d'Ingénierie Supramoléculaires (ISIS), CNRS UMR 7006, Université de Strasbourg, 8 Allée Gaspard Monge, 67000 Strasbourg, France
| |
Collapse
|
4
|
Wahab A, Cheng G, Su H, Yang L, Gao Z, Yu B. Furan ring opening reaction for the synthesis of 2,5-dicarbonyl-3-ene-phosphates. Org Biomol Chem 2023; 21:7219-7223. [PMID: 37642497 DOI: 10.1039/d3ob00933e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Furan ring opening reactions are essential in organic synthesis, enabling the incorporation of diverse functional groups and the construction of complex molecular structures. A highly efficient and practical method for synthesizing 2,5-dicarbonyl-3-ene-phosphates from readily available biomass furan and dialkyl phosphonates is reported. The reaction, catalyzed by FeCl3, demonstrated wide substrate scope and high synthetic efficiency. Gram-scale synthesis was achieved, and a one-pot reaction provided a quick access route to the desired compounds. Additionally, a successful Diels-Alder reaction highlighted the versatility of the methodology.
Collapse
Affiliation(s)
- Abdul Wahab
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Guanghai Cheng
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Hang Su
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Lihua Yang
- Oil & Gas Technology Research Institute, Changqing Oilfield Branch Company, Petrochina, Xi'an, 710018, China.
- National Engineering Laboratory for Low-permeability Oil & Gas Exploration and Development, Xi'an, 710018, China
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| | - Binxun Yu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China.
| |
Collapse
|
5
|
Pramanik S, Jagadeesh C, Chatterjee A, Debnath SC, Saha J. Access to densely functionalized spirocyclopentenonyl oxindole frameworks via aza- and carbo-Piancatelli rearrangement. Org Biomol Chem 2022; 20:5249-5253. [PMID: 35730444 DOI: 10.1039/d2ob00883a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new strategy for access to spirocyclopentenonyl oxindole frameworks is disclosed. Suitably anchored furfuryl alcohol at C3 of an oxindole was used for the aza-Piancatelli rearrangement, which furnished spirocyclic aminocyclopentenone frameworks with catalytic phosphomolybdic acid. The scope of the transformation was extended to the carbo-Piancatelli rearrangement with various indole derivatives.
Collapse
Affiliation(s)
- Sourav Pramanik
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India. .,Department of Chemistry, University of Kalyani, Nadia, W.B-741235, India
| | - Chenna Jagadeesh
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India.
| | - Ayan Chatterjee
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India.
| | | | - Jaideep Saha
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India.
| |
Collapse
|