1
|
Zheng Y, Wu S, Li J, Shen Z, Li J, Wu Z, Hu D, Song B. Development of dual-function disulfaneyl oxadiazole bactericides by structurally incorporating β-carboline moieties. Bioorg Chem 2025; 162:108606. [PMID: 40408982 DOI: 10.1016/j.bioorg.2025.108606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/12/2025] [Accepted: 05/16/2025] [Indexed: 05/25/2025]
Abstract
Structural derivatization of known leads using the scaffold hopping strategy is a classic approach in pesticide discovery. However, the modificatory universality of lead skeletons profoundly influences the feasibility of this protocol. We herein report development of disulfaneyl oxadiazole bactericides involving β-carboline moieties. Derivative B18 is filtered out to exhibit excellent in vitro antibacterial properties with half-maximal effective concentrations of 0.47 mg/L, 1.72 mg/L, and 5.97 mg/L against Xanthomonas oryzae pv. oryzae, Xanthomonas oryzae pv. oryzicola, and Xanthomonas citri pv. citri, respectively. The observed values fall short in comparison to the positive controls thiodiazole copper (TC) and allicin (AC). Moreover, in vivo pot studies reveal that B18 demonstrates enhanced curative (49.12 %) and protective (49.41 %) efficacy in comparison to the control groups TC and AC. Investigation regarding the mechanism of action indicates that B18 functions through a dual antibacterial approach. It not only interferes with the metabolic pathways of starch and sucrose in bacteria, and boosts the activity of rice defense enzymes while upregulating the expression of pyruvate kinase in the glycolytic pathway, thereby enhancing the plant resistance to bacterial pests.
Collapse
Affiliation(s)
- Yanping Zheng
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Sikai Wu
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Jianzhuan Li
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Zhongjie Shen
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Jiao Li
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Zengxue Wu
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China
| | - Deyu Hu
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China.
| | - Baoan Song
- State Key Laboratory of Green Pesticide, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, PR China.
| |
Collapse
|
2
|
Das S. Visible-Light-Induced Dearomative Annulation of Indoles toward Stereoselective Formation of Fused- and Spiro Indolines. ACS OMEGA 2024; 9:36023-36042. [PMID: 39220487 PMCID: PMC11360027 DOI: 10.1021/acsomega.4c02848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 05/29/2024] [Indexed: 09/04/2024]
Abstract
Dearomatization approaches are attractive for their abilities to transform simple, planar arenes into complex, three-dimensional architectures. In particular, visible-light driven dearomatization strategies are significant because of their mild, green, and sustainable nature, enabling the fabrication of new chemical bonds via an electron transfer or energy transfer process. Indole compounds, being potentially bioactive and readily accessible, can be employed efficiently as building blocks for constructing diverse annulated frameworks under photocatalysis. Highly stereoselective radical cascade reactions of appropriate indole systems can provide complex cyclic scaffolds bearing multiple stereocenters. In fact, the past few years have witnessed the renaissance of dearomative cycloadditions of indoles via visible-light-induced photocatalysis. The present review highlights recent advances (2019-mid 2024) in visible-light-driven dearomative annulation of indoles leading to formation of polycyclic indolines, including angularly fused and spiro indolines. Most of the reactions described in this review are simple, providing quick access to the desired products. Additionally, characteristic reaction mechanisms are offered to provide an understand of how indole scaffolds show distinctive reactivity under photocatalytic conditions.
Collapse
Affiliation(s)
- Suven Das
- Department of Chemistry, Rishi Bankim Chandra College for Women, Naihati, North 24 Parganas, West Bengal 743165, India
| |
Collapse
|
3
|
Xu B, Liu X, Deng L, Shang Y, Jie X, Su W. Dehydrogenative synthesis of N-functionalized 2-aminophenols from cyclohexanones and amines: Molecular complexities via one-shot assembly. SCIENCE ADVANCES 2024; 10:eadn7656. [PMID: 38691610 PMCID: PMC11062582 DOI: 10.1126/sciadv.adn7656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 05/03/2024]
Abstract
Polyfunctionalized arenes are privileged structural motifs in both academic and industrial chemistry. Conventional methods for accessing this class of chemicals usually involve stepwise modification of phenyl rings, often necessitating expensive noble metal catalysts and suffering from low reactivity and selectivity when introducing multiple functionalities. We herein report dehydrogenative synthesis of N-functionalized 2-aminophenols from cyclohexanones and amines. The developed reaction system enables incorporating amino and hydroxyl groups into aromatic rings in a one-shot fashion, which simplifies polyfunctionalized 2-aminophenol synthesis by circumventing issues associated with traditional arene modifications. The wide substrate scope and excellent functional group tolerance are exemplified by late-stage modification of complex natural products and pharmaceuticals that are unattainable by existing methods. This dehydrogenative protocol benefits from using 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) as oxidant that offers interesting chemo- and regio-selective oxidation processes. More notably, the essential role of in situ generated water is disclosed, which protects aliphatic amine moieties from overoxidation via hydrogen bond-enabled interaction.
Collapse
Affiliation(s)
- Biping Xu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Xiaojie Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Lei Deng
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| | - Yaping Shang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Xiaoming Jie
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
| | - Weiping Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, 155 Yangqiao Road West, Fuzhou 350002, China
- Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian 350108, China
- College of Chemistry, Fuzhou University, Fuzhou 350108, China
| |
Collapse
|
4
|
Yan P, Stegbauer S, Wu Q, Kolodzeiski E, Stein CJ, Lu P, Bach T. Enantioselective Intramolecular ortho Photocycloaddition Reactions of 2-Acetonaphthones. Angew Chem Int Ed Engl 2024; 63:e202318126. [PMID: 38275271 DOI: 10.1002/anie.202318126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 01/27/2024]
Abstract
2-Acetonaphthones, which bear an alkenyl group tethered to its C1 carbon atom via an oxygen atom, were found to undergo an enantioselective intramolecular ortho photocycloaddition reaction. A chiral oxazaborolidine Lewis acid leads to a bathochromic absorption shift of the substrate and enables an efficient enantioface differentiation. Visible light irradiation (λ=450 nm) triggers the reaction which is tolerant of various groups at almost any position except carbon atom C8 (16 examples, 53-99 % yield, 80-97 % ee). Consecutive reactions were explored including a sensitized rearrangement to tetrahydrobiphenylenes, which occurred with full retention of configuration. Evidence was collected that the catalytic photocycloaddition occurs via triplet intermediates, and the binding mode of the acetonaphthone to the chiral Lewis acid was elucidated by DFT calculations.
Collapse
Affiliation(s)
- Peng Yan
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
| | - Simone Stegbauer
- Department Chemie and Catalysis Research Center (CRC) School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, D-85747, Garching, Germany
| | - Qinqin Wu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
| | - Elena Kolodzeiski
- Department Chemie and Catalysis Research Center (CRC) School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, D-85747, Garching, Germany
| | - Christopher J Stein
- Department Chemie and Catalysis Research Center (CRC) School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, D-85747, Garching, Germany
| | - Ping Lu
- Research Center for Molecular Recognition and Synthesis, Department of Chemistry, Fudan University, 220 Handan Lu, Shanghai, 200433, China
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC) School of Natural Sciences, Technische Universität München, Lichtenbergstraße 4, D-85747, Garching, Germany
| |
Collapse
|
5
|
Hu T, Jaber M, Tran G, Bouyssi D, Monteiro N, Amgoune A. Photoinduced NiH Catalysis with Trialkylamines for the Stereodivergent Transfer Semi-Hydrogenation of Alkynes. Chemistry 2023; 29:e202301636. [PMID: 37466982 DOI: 10.1002/chem.202301636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/13/2023] [Accepted: 07/18/2023] [Indexed: 07/20/2023]
Abstract
We report a selectivity-switchable nickel hydride-catalyzed methodology that enables the stereocontrolled semi-reduction of internal alkynes to E- or Z-alkenes under very mild conditions. The proposed transfer semi-hydrogenation process involves the use of a dual nickel/photoredox catalytic system and triethylamine, not only as a sacrificial reductant, but also as a source of hydrogen atoms. Mechanistic studies revealed a pathway involving photo-induced generation of nickel hydride, syn-hydronickelation of alkyne, and alkenylnickel isomerization as key steps. Remarkably, mechanistic experiments indicate that the control of the stereoselectivity is not ensuing from a post-reduction alkene photoisomerization under our conditions. Instead, we demonstrate that the stereoselectivity of the reaction is dependent on the rate of a final protonolysis step which can be tuned by adjusting the pKa of an alcohol additive.
Collapse
Affiliation(s)
- Tingjun Hu
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), Univ Lyon, Université Lyon 1, 1 rue Victor Grignard, 69100, Villeurbanne, France
| | - Mohammad Jaber
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), Univ Lyon, Université Lyon 1, 1 rue Victor Grignard, 69100, Villeurbanne, France
| | - Gaël Tran
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), Univ Lyon, Université Lyon 1, 1 rue Victor Grignard, 69100, Villeurbanne, France
| | - Didier Bouyssi
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), Univ Lyon, Université Lyon 1, 1 rue Victor Grignard, 69100, Villeurbanne, France
| | - Nuno Monteiro
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), Univ Lyon, Université Lyon 1, 1 rue Victor Grignard, 69100, Villeurbanne, France
| | - Abderrahmane Amgoune
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires (ICBMS, UMR 5246 du CNRS), Univ Lyon, Université Lyon 1, 1 rue Victor Grignard, 69100, Villeurbanne, France
- Institut Universitaire de France (IUF), 1 rue Descartes, 75231, Paris, France
| |
Collapse
|
6
|
Zhen G, Zeng G, Jiang K, Wang F, Cao X, Yin B. Visible-Light-Induced Diradical-Mediated ipso-Cyclization towards Double Dearomative [2+2]-Cycloaddition or Smiles-Type Rearrangement. Chemistry 2023; 29:e202203217. [PMID: 36460618 DOI: 10.1002/chem.202203217] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 12/05/2022]
Abstract
When mono-radical ipso-cyclization of aryl sulfonamides tend to undergo Smiles-type rearrangement through aromatization-driven C-S bond cleavage, diradical-mediated cyclization must perform in a distinct reaction pathway. It is interesting meanwhile challenging to tune the rate of C-S bond cleavage to achieve a chemically divergent reaction of (hetero) aryl sulfonamides in a visible-light induced energy transfer (EnT) reaction pathway involving diradical species. Herein a chemically divergent reaction based on the designed indole-tethered (hetero)arylsulfonamides is reported which involves a diradical-mediated ipso-cyclization and a controllable cleavage of an inherent C-S bond. The combined experimental and computational results have revealed that the cleavage of the C-S bond in these substrates can be controlled by tuning the heteroaryl moieties: a) If the (hetero)aryl is thienyl, furyl, phenanthryl, etc., the radical coupling of double dearomative diradicals (DDDR) precedes over C-S bond cleavage to afford cyclobutene fused indolines by double dearomative [2+2]-cycloaddition; b) if the (hetero)aryl is phenyl, naphthyl, pyridyl, indolyl etc., the cleavage of C-S bond in DDDR is favored over radical coupling to afford biaryl products.
Collapse
Affiliation(s)
- Guangjin Zhen
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Guohui Zeng
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Kai Jiang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Furong Wang
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Xiaohui Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Biaolin Yin
- Key Laboratory of Functional Molecular Engineering of Guangdong Province, School of Chemistry and Chemical Engineering, South China University of Technology (SCUT), State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
7
|
Arai N. Formation of
anti‐Bredt
‐type Azabicyclo[4.2.0]octene Frameworks through Photochemical Intramolecular [2+2] Cycloaddition between Indole and a Distal Double Bond of Allene. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Noriyoshi Arai
- Division of Applied Chemistry, Faculty of Engineering Hokkaido University, Sapporo Hokkaido Japan
| |
Collapse
|
8
|
Zhu M, Zhang X, Zheng C, You SL. Energy-Transfer-Enabled Dearomative Cycloaddition Reactions of Indoles/Pyrroles via Excited-State Aromatics. Acc Chem Res 2022; 55:2510-2525. [PMID: 35943728 DOI: 10.1021/acs.accounts.2c00412] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Exploring the enormous chemical space through an expedient building-up of molecular diversity is an important goal of organic chemistry. The development of synthetic methods toward molecules with unprecedented structural motifs lays the foundation for wide applications ranging from pharmaceutical chemistry to materials science. In this regard, the dearomatization of arenes has been recognized as a unique strategy since it provides novel retrosynthetic disconnections for various spiro or fused polycyclic molecules with increased saturation and stereoisomerism. However, inherent thermodynamic challenges are associated with dearomatization processes. The disruption of the aromaticity of arene substrates usually requires large energy inputs, which makes harsh conditions necessary for many ground-state dearomatization reactions. Therefore, further expansion of the scope of dearomatization reactions remains a major problem not fully solved in organic chemistry.The past decade has witnessed tremendous progress on photocatalytic reactions under visible light. Particularly, reactions via an energy transfer mechanism have unlocked new opportunities for dearomatization reactions. Mediated by appropriately chosen photosensitizers, aromatic substrates can be excited. This kind of precise energy input might make feasible some dearomatization reactions that are otherwise unfavorable under thermal conditions because of the significant energy increases of the substrates. Nevertheless, the lifetimes of key intermediates in energy-transfer-enabled reactions, such as excited-state aromatics and downstream biradical species, are quite short. How to regulate the reactivities of these transient intermediates to achieve exclusive selectivity toward a certain reaction pathway among many possibilities is a crucial issue to be addressed.Since 2019, our group has reported a series of visible-light-induced dearomative cycloaddition reactions for indole and pyrrole derivatives. It was found that the aromatic units in substrates can be excited under the irradiation of visible light in the presence of a suitable photosensitizer. These excited aromatics readily undergo various [m + n] cycloaddition reactions with appropriately tethered unsaturated functionalities including alkenes, alkynes, N-alkoxy oximes, (hetero)arenes, and vinylcyclopropanes. The reactions yield polycyclic indolines and pyrrolines with highly strained small- and/or medium-sized rings embedded, some of which possess unique bridge- or cagelike topologies. Systematic mechanistic studies confirmed the involvement of an energy transfer process. Density functional theory (DFT) calculations revealed the correlation between the substrate structure and the excitation efficiency, which accelerated the optimization of the reaction parameters. Meanwhile, DFT calculations demonstrated the competition between kinetically and thermodynamically controlled pathways for the open-shell singlet biradical intermediates, which allowed the complete switches from [2 + 2] cycloaddition to 1,5-hydrogen atom transfer in reactions with N-alkoxy oximes and to [4 + 2] cycloaddition in reactions with naphthalene. Furthermore, ab initio molecular dynamics (AIMD) simulations uncovered post-spin crossing dynamic effects, which determine the regioselectivity for the open-shell singlet biradical recombination step in the reactions of pyrrole-derived vinylcyclopropanes.An increasing number of scientists have joined in the research on visible-light-induced dearomative cycloaddition reactions and contributed to more elegant examples in this area. The visible-light-induced dearomatization reaction via energy transfer mechanism, although still in its infancy, has exhibited great potential in the synthesis of molecules that can hardly be accessed by other methods. We believe that future development will further push the boundary of organic chemistry and find applications in the synthesis of functional molecules and related disciplines.
Collapse
Affiliation(s)
- Min Zhu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| | - Xiao Zhang
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.,Fujian Key Laboratory of Polymer Materials, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, 8 Shangsan Lu, Fuzhou 350007, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.,School of Physical Science and Technology, ShanghaiTech University, 100 Haike Road, Shanghai 201210, China
| |
Collapse
|
9
|
Shimizu N, Shigemitsu H, Kida T, Bach T, Mori T. Visible Light-Induced Regio- and Enantiodifferentiating [2 + 2] Photocycloaddition of 1,4-Naphthoquinones Mediated by Oppositely Coordinating 1,3,2-Oxazaborolidine Chiral Lewis Acid. J Org Chem 2022; 87:8071-8083. [PMID: 35652135 DOI: 10.1021/acs.joc.2c00730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A range of asymmetric photochemical transformations using visible light have recently become considerably attractive. Among the various approaches, chiral Lewis acid association to enones for [2 + 2] and ortho photocycloadditions and oxadi-π-methane rearrangements have shown to be very promising. Naturally, chiral Lewis acid coordination protects one of the prochiral faces of the C═C double bond, which enables an effective enantiodifferentiation in the following bond-forming process(es). Here, we studied regio- and enantiodifferentiating [2 + 2] photocycloaddition reactions of naphthoquinone derivatives mediated by chiral oxazaborolidines. A stereochemical control was quite challenging for the 2-ene-1,4-dione substrate, as a double coordination of Lewis acid essentially cancels out the face selectivity, and a mono-coordination to each carbonyl group leads to an opposite stereochemical outcome. Furthermore, a stepwise coordination in the ground state of Lewis acid in a 1:1 fashion was practically inaccessible. We found that the excited-state decomplexation is a key to accomplish high regio- and enantioselectivities in the photocycloaddition of an ene-dione.
Collapse
Affiliation(s)
- Nao Shimizu
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Hajime Shigemitsu
- Integrated Frontier Research for Medical Science Division Institute for OTRI, Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Toshiyuki Kida
- Integrated Frontier Research for Medical Science Division Institute for OTRI, Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Thorsten Bach
- Department Chemie and Catalysis Research Center (CRC), Technische Universität München, Lichtenbergstrasse 4, Garching 85747, Germany
| | - Tadashi Mori
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|