1
|
Zhang ML, Cao XQ, Cao C, Zheng TF, Xie X, Wen HR, Liu SJ. Highly stable Tb(III) metal-organic framework derived from a new benzothiadiazole functionalized ligand for fluorescence recognition of ascorbic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 323:124898. [PMID: 39116597 DOI: 10.1016/j.saa.2024.124898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Because ascorbic acid (AA) is one of the basic elements to maintain the normal physiological functions of human body, it is urgent to develop a material that can achieve efficient, rapid and in-situ detection for AA. A new fluorescence organic compound 4',4'''-(benzo[c][1,2,5]thiadiazole-4,7-diyl)bis([1,1'-biphenyl]-4-carboxylic acid) (H2BTBC) based on benzothiadiazole group has been synthesized, which can detect Fe3+ ions by fluorescence turn-off effect with a detection limit of 0.015 μM, as well as recognize linear amines by fluorescence turn-on effect. Moreover, a highly stable Tb(III) metal-organic framework has been solvothermally prepared with H2BTBC, namely {[(CH3)2NH2]2[Tb2(BTBC)4]∙solvents}n (JXUST-39), which can selectively detect AA among biological fluids by fluorescence enhancement effect with a detection limit of 0.077 μM. In addition, the mechanism for JXUST-39 detecting AA is possibly the cooperative effect of absorbance-caused enhancement and charge transfer between JXUST-39 and AA. Moreover, LED lamp beads, fluorescent films and fluorescent detection test paper based on JXUST-39 were prepared to achieve portable detection via fluorescence enhancement effect.
Collapse
Affiliation(s)
- Man-Lian Zhang
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Xiao-Qin Cao
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Chen Cao
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China.
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Xin Xie
- School of Pharmaceutical Sciences, Gannan Medical University, Ganzhou 341000, Jiangxi Province, PR China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Province Key Laboratory of Functional Crystalline Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, PR China.
| |
Collapse
|
2
|
Elenkova D, Dimitrova Y, Tsvetkov M, Morgenstern B, Milanova M, Todorovsky D, Zaharieva J. Investigation of the Sensing Properties of Lanthanoid Metal-Organic Frameworks (Ln-MOFs) with Terephthalic Acid. Molecules 2024; 29:3713. [PMID: 39125117 PMCID: PMC11314416 DOI: 10.3390/molecules29153713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 07/26/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024] Open
Abstract
The solvothermal synthesis of LnCl3.nH2O with terephthalic acid (benzene-1,4-dicarboxylic acid, H2BDC) produced metal-organic frameworks (LnBDC), [Ln2(BDC)3(H2O)4]∞, where Ln = Sm, Eu, Tb, and Dy. The materials obtained were characterized by a number of physico-chemical techniques. The influence of the ionic radius of the lanthanides on the microstructural characteristics of the Ln-MOFs was evaluated by performing Rietveld refinement. The MOFs obtained were tested as fluorescent sensors for numerous cations and anions in water. The highly luminescent EuBDC and TbBDC demonstrated multi-responsive luminescence sensing functions to detect Ag(I), Fe(III), Cr(III), and Cr(VI), which are essential for their environmental applications. By applying the non-linear Stern-Volmer equation, the fluorescent quenching mechanism was determined. The stability of the obtained materials in water in a wide pH range (acidity pH = 4 and alkalinity pH = 9 solutions) was confirmed.
Collapse
Affiliation(s)
- Denitsa Elenkova
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (Y.D.); (M.T.); (M.M.); (D.T.)
| | - Yana Dimitrova
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (Y.D.); (M.T.); (M.M.); (D.T.)
| | - Martin Tsvetkov
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (Y.D.); (M.T.); (M.M.); (D.T.)
| | - Bernd Morgenstern
- Inorganic Solid State Chemistry, Saarland University, Campus Geb. C4 1, 66123 Saarbrücken, Germany;
| | - Maria Milanova
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (Y.D.); (M.T.); (M.M.); (D.T.)
| | - Dimitar Todorovsky
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (Y.D.); (M.T.); (M.M.); (D.T.)
| | - Joana Zaharieva
- Faculty of Chemistry and Pharmacy, Sofia University, 1164 Sofia, Bulgaria; (Y.D.); (M.T.); (M.M.); (D.T.)
| |
Collapse
|
3
|
Wang S, Liu R, Li X, Guo W, Hao H, Ma X, Zhang L, Zhao X, Yin J, Zhou H, Li X, Kong X, Zhu H, Li Y, Wang S, Zhong D, Dai F. Two-Dimensional Lanthanide Metal-Organic Frameworks as a Platform for Sensing Pollutant and Nitrophenols Reduction. Inorg Chem 2023; 62:13832-13846. [PMID: 37591631 DOI: 10.1021/acs.inorgchem.3c01645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The discharge of harmful and toxic pollutants in water is destroying the ecosystem balance and human being health at an alarming rate. Therefore, the detection and removal of water pollutants by using stable and efficient materials are significant but challenging. Herein, three novel lanthanide metal-organic frameworks (Ln-MOFs), [La(L)(DMF)2(H2O)2]·H2O (LCUH-104), [Nd(L)(DMF)2(H2O)2]·H2O (LCUH-105), and [Pr(L)(DMF)2(H2O)2]·H2O (LCUH-106) [H3L = 5-(4-(tetrazol-5-yl)phenyl)isophthalic acid (H3TZI)] were solvothermally constructed and structurally characterized. In the three Ln-MOFs, dinuclear metallic clusters {Ln2} were connected by deprotonated tetrazol-containing dicarboxylate TZI3- to obtain a 2D layered framework with a point symbol of {42·84}·{46}. Their excellent chemical and thermal stabilities were beneficial to carry out fluorescence sensing and achieve the catalytic nitrophenols (NPs) reduction. Especially, the incorporation of the nitrogen-rich tetrazole ring into their 2D layered frameworks enables the fabrication of Pd nanocatalysts (Pd NPs@LCUH-104/105/106) and have dramatically enhanced catalytic activity by using the unique metal-support interactions between three Ln-MOFs and the encapsulating palladium nanoparticles (Pd NPs). Specifically, the reduction of NPs (2-NP, 3-NP, and 4-NP) in aqueous solution by Pd NPs@LCUH-104 exhibits exceptional conversion efficiency, remarkable rate constants (k), and outstanding cycling stability. The catalytic rate of Pd NPs@LCUH-104 for 4-NP is nearly 8.5 times more than that of Pd/C (wt 5%) and its turnover frequency value is 0.051 s-1, which indicate its excellent catalytic activity. Meanwhile, LCUH-105, as a multifunctional fluorescence sensor, exhibited excellent fluorescence detection of norfloxacin (NFX) (turn on) and Cr2O72- (turn off) with high selectivity and sensitivity at a low concentration, and the corresponding fluorescence enhancement/quenching mechanism has also been systematically investigated through various detection means and theoretical calculations.
Collapse
Affiliation(s)
- Shufang Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Ronghua Liu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Xin Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Wenxiao Guo
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Hongguo Hao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Xiaoxue Ma
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Lu Zhang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Xin Zhao
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Jie Yin
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Huawei Zhou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Xia Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Xiangjin Kong
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Hongjie Zhu
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Yunwu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Suna Wang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Pharmacy, School of Chemistry and Chemical Engineering, College of Materials Science and Engineering, and Dongchang College, Liaocheng University, Liaocheng 252059, China
| | - Dichang Zhong
- Institute for New Energy Materials and Low Carbon Technologies School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Fangna Dai
- College of Science, School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, China
| |
Collapse
|
4
|
Qu P, Zhang MH, Zhang JW. A rare heptanuclear cluster-based yttrium-organic framework with an aromatic tricarboxylate ligand for blue LED application. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
5
|
Yang B, Guo J. Selective fluorescent sensing and photocatalytic properties of a new 2D Co coordination polymer based on 1,1′-di(p-carbonylbenzyl)-2,2′-biimidazoline. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
6
|
Li B, Duan WX, Liu SS, Jin YJ, Wang LY. Zinc(II) and Cadmium(II) Coordination Polymers Constructed from 5-(Benzimidazole-1-yl)isophthalic Acid Ligand: Syntheses, Structures and Detection of Antibiotics in Aqueous Medium. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02242-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
7
|
Wang X, Xu QW, Wei MM, Chen JY, Wang HH, Li X. Lanthanide ternary mixed-ligand coordination polymers as fluorescent sensors for the sensitive and selective detection of chlorogenic acid. CrystEngComm 2022. [DOI: 10.1039/d2ce00954d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of lanthanide coordination polymers constructed from ternary mixed ligands were synthesized. The Eu-CP has fluorescence sensing properties for chlorogenic acid. The film loaded with Eu-CP can be used for visual fluorescence detection.
Collapse
Affiliation(s)
- Xiong Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Qi-Wei Xu
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Ming-Ming Wei
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Jing-Yao Chen
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Hong-Hao Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| | - Xia Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China
| |
Collapse
|
8
|
Yang B. Sensing and photocatalytic properties of a new 3D Co( ii) coordination polymer based on 1,1′-di( p-carboxybenzyl)-2,2′-biimidazole. NEW J CHEM 2022. [DOI: 10.1039/d2nj03281c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One novel 3D interpenetrated Co(ii) CP acts as multi-functional chemosensors in detection of Fe3+, Cr2O72−, CrO42− and nitrofurantoin and is an effective and stable photocatalyst and displays excellent photo-catalytic properties.
Collapse
Affiliation(s)
- Bo Yang
- School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng, 224007, China
| |
Collapse
|
9
|
Xue YS, Sun DL, Lv JQ, Li SJ, Chen XR, Cheng WW, Wu HX, Wang J. Two coordination polymers as multi-responsive luminescent sensors for the detection of UO 22+, Cr( vi), and the NFT antibiotic. CrystEngComm 2022. [DOI: 10.1039/d2ce00631f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two CPs have been synthesized using solvothermal method and can act as multi-responsive luminescent probe to detect UO22+ cation, Cr2O72−/CrO42− anions, and nitrofuran antibiotic in aqueous media with high sensitivity and selectivity.
Collapse
Affiliation(s)
- Yun-Shan Xue
- School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Dan-Ling Sun
- School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Jun-Qing Lv
- School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Shi-Juan Li
- School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Xuan-Rong Chen
- School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Wei-Wei Cheng
- School of Chemistry and Bioengineering, Nanjing Normal University Taizhou College, Taizhou 225300, China
| | - Hong-Xiu Wu
- School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| | - Jun Wang
- School of Chemistry & Environmental Engineering, Yancheng Teachers University, Yancheng 224007, China
| |
Collapse
|
10
|
Zhang JW, Li X, Yu RY, Zhang JP, Chen Y, Li JQ. An unusual F-bridged dual-trinuclear Mg–organic framework as a luminescent thermometer for highly efficient low-temperature detection. CrystEngComm 2022. [DOI: 10.1039/d2ce01008a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Mg-MOF with unusual μ3-F dual-trinuclear cluster was successfully afforded by utilizing a solvent system of DMA/DMPU/HFP. Interestingly, as a luminescent thermometer, this MOF exhibits excellent low-temperature sensing capabilities.
Collapse
Affiliation(s)
- Jian-Wei Zhang
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Xi Li
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Rui-Ying Yu
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Jin-Ping Zhang
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Ya Chen
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| | - Jie-Qiong Li
- School of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan, 476000, P. R. China
| |
Collapse
|
11
|
Ding J, Li N, Sun DL, Zhu Y, Cheng WW, Chen XR, Xue YS. Three coordination polymers as a multi-responsive luminescent probe for the detection of Fe3+, Cr2O72− and antibiotic in aqueous media. Polyhedron 2022. [DOI: 10.1016/j.poly.2021.115575] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Zhang Y, Ruan J, Ma D, Gao J, Wu G, Liu Y, Yu Y. Two fluorescent copper phosphonate complexes for sensing antibiotics, ketones and Fe
3+
in water. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100213] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Yu‐Tong Zhang
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| | - Jia‐Xin Ruan
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| | - Dong‐Sheng Ma
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| | - Jin‐Sheng Gao
- Engineering Research Centre of Pesticide Heilongjiang University Harbin 150080 P.R. China
| | - Guang Wu
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| | - Yi‐Fu Liu
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
- Engineering Research Centre of Pesticide Heilongjiang University Harbin 150080 P.R. China
| | - Ying‐Hui Yu
- School of Chemistry and Materials Science Heilongjiang University Harbin 150080 P. R. China
| |
Collapse
|
13
|
Wang CL, Zheng YX, Chen L, Zhu CY, Gao W, Li P, Jie-Ping L, Zhang XM. The construction of a multifunctional luminescent Eu-MOF for the sensing of Fe 3+, Cr 2O 72− and amines in aqueous solution. CrystEngComm 2021. [DOI: 10.1039/d1ce01192h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A 3D Eu(iii)-based metal–organic framework has been synthesized as a multiresponsive chemosensor for highly sensitive and selective detection of Fe3+, Cr2O72− and amines in water.
Collapse
Affiliation(s)
- Cui-Li Wang
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| | - Ya-Xin Zheng
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| | - Le Chen
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| | - Cai-Yong Zhu
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| | - Wei Gao
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| | - Peng Li
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| | - Liu Jie-Ping
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| | - Xiu-Mei Zhang
- College of Chemistry and Materials Science, Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education, Huaibei Normal University, Anhui 235000, China
| |
Collapse
|