1
|
Lee J, Park BN. Synergistic Enhancement of Electron Dynamics and Optical Properties in Zeolitic Imidazolate Framework-8-Derived Zinc Oxide via Surface Plasmon Resonance Effects of Silver Nanoparticles under UV Irradiation. MATERIALS (BASEL, SWITZERLAND) 2024; 17:3193. [PMID: 38998276 PMCID: PMC11242807 DOI: 10.3390/ma17133193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/14/2024]
Abstract
This study investigates the surface plasmon resonance (SPR)-induced UV photoresponse of zinc oxide (ZnO) derived from zeolitic imidazolate framework-8 (ZIF-8) to assess the influence of silver nanoparticles (Ag NPs) on the photoresponse behavior of metal-organic framework (MOF)-derived ZnO. The initial synthesis involved a thermal treatment in air to convert ZIF-8 into ZnO. We noted enhanced optical absorption both in the UV and visible spectra with the deposition of Ag NPs onto the ZIF-8-derived ZnO. Additionally, the presence of Ag NPs in the ZnO resulted in a substantial increase in current, even without any light exposure. This increase is attributed to the transfer of electrons from the Ag NPs to the ZnO. Photocurrent measurements under UV illumination revealed that the photocurrent with Ag NPs was significantly higher-by two orders of magnitude-compared with that without Ag NPs. This demonstrates that SPR-induced absorption markedly boosted the photocurrent, although the current rise and decay time constants remained comparable to those observed with ZnO alone. Although Ag NPs contribute electrons to ZnO, creating a "pre-doping" effect that heightens baseline conductivity (even in the absence of light), this does not necessarily alter the recombination dynamics of the photogenerated carriers, as indicated by the similar rise and decay time constants. The electron transfer from Ag to ZnO increases the density of charge carriers but does not significantly influence their recombination.
Collapse
Affiliation(s)
- Jaewon Lee
- Department of Materials Science and Engineering, Hongik University, 72-1 Sangsu-dong, Mapo-gu, Seoul 04066, Republic of Korea
| | - Byoung-Nam Park
- Department of Materials Science and Engineering, Hongik University, 72-1 Sangsu-dong, Mapo-gu, Seoul 04066, Republic of Korea
| |
Collapse
|
2
|
Yao L, Yu Y, Xu X, Du Z, Yang T, Hu J, Huang H. In-situ construction of WS 2/ZIF-8 composites with an electron-rich interface for enhancing nitrogen photofixation. J Colloid Interface Sci 2024; 654:189-200. [PMID: 37839236 DOI: 10.1016/j.jcis.2023.10.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/26/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
Photocatalytic nitrogen reduction reaction (PNRR) is an environmentally friendly synthesis method. It has been regarded as a promising approach for future NH3 preparation, which can reduce the natural fuel consumption and pollution of the Haber Bosch process. Nevertheless, this method exists poor activity for mass production, so it is urgent but challenging to explore highly efficient catalysts. Here, the novel WS2/ZIF-8 composites are reported, DFT and XPS indicate the transfer direction of electrons is from ZIF-8 to WS2, forming an electron-rich interface between WS2 and ZIF-8, thus it endows the more powerful photocatalytic nitrogen reduction ability for 2-WS2/ZIF-8 than monomer material. Meanwhile, 2-WS2/ZIF-8 exhibits admirable photocatalytic nitrogen reduction performance under real and simulated sunlight or in tap water, further attesting its excellent stability and practicability.
Collapse
Affiliation(s)
- Lin Yao
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| | - Yanming Yu
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| | - Xin Xu
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| | - Zhenhang Du
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| | - Tao Yang
- Jiangxi Province Engineering Research Center of Ecological Chemical Industry, Jiujiang University, Jiujiang 332005, PR China.
| | - Jie Hu
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| | - Hao Huang
- State Key Laboratory of Metastable Materials Science & Technology, Hebei Key Laboratory of Heavy Metal Deep Remediation in Water and Resource Reuse, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066004, PR China.
| |
Collapse
|
3
|
Self-templated synthesis of core-shell Fe3O4@ZnO@ZIF-8 as an efficient visible-light-driven photocatalyst. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2022.106583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
4
|
Phuruangrat A, Boonnoi P, Sakhon T, Thongtem S, Thongtem T. Reduction deposition of Pd nanoparticles on ZnO flowers used for photodegradation of methylene blue and methyl orange under UV light. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1987463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Anukorn Phuruangrat
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Phattareeya Boonnoi
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Thawatchai Sakhon
- Electron Microscopy Research and Service Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Somchai Thongtem
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Titipun Thongtem
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|