1
|
Lakhan MN, Hanan A, Hussain A, Ali Soomro I, Wang Y, Ahmed M, Aftab U, Sun H, Arandiyan H. Transition metal-based electrocatalysts for alkaline overall water splitting: advancements, challenges, and perspectives. Chem Commun (Camb) 2024; 60:5104-5135. [PMID: 38625567 DOI: 10.1039/d3cc06015b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
Water electrolysis is a promising method for efficiently producing hydrogen and oxygen, crucial for renewable energy conversion and fuel cell technologies. The hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) are two key electrocatalytic reactions occurring during water splitting, necessitating the development of active, stable, and low-cost electrocatalysts. Transition metal (TM)-based electrocatalysts, spanning noble metals and TM oxides, phosphides, nitrides, carbides, borides, chalcogenides, and dichalcogenides, have garnered significant attention due to their outstanding characteristics, including high electronic conductivity, tunable valence electron configuration, high stability, and cost-effectiveness. This timely review discusses developments in TM-based electrocatalysts for the HER and OER in alkaline media in the last 10 years, revealing that the exposure of more accessible surface-active sites, specific electronic effects, and string effects are essential for the development of efficient electrocatalysts towards electrochemical water splitting application. This comprehensive review serves as a guide for designing and constructing state-of-the-art, high-performance bifunctional electrocatalysts based on TMs, particularly for applications in water splitting.
Collapse
Affiliation(s)
- Muhammad Nazim Lakhan
- Applied Chemistry and Environmental Science, School of Science, STEM College, RMIT University, Melbourne, Australia
| | - Abdul Hanan
- Sunway Center for Electrochemical Energy and Sustainable Technology, SCEEST, Sunway University, Bandar Sunway, Malaysia
| | - Altaf Hussain
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, P. R. China
- University of Science and Technology of China, Hefei, P. R. China
| | - Irfan Ali Soomro
- Institute of Computational Chemistry, College of Chemistry, Beijing University of Chemical Technology, P. R. China
| | - Yuan Wang
- Department of Chemical Engineering, The University of Melbourne, Melbourne, VIC 3010, Australia.
| | - Mukhtiar Ahmed
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, P. R. China
| | - Umair Aftab
- Department of Metallurgy and Materials Engineering, Mehran University of Engineering and Technology, Jamshoro, Pakistan.
| | - Hongyu Sun
- School of Resources and Materials, Northeastern University at Qinhuangdao, 066004 Qinhuangdao, P. R. China
| | - Hamidreza Arandiyan
- Centre for Advanced Materials and Industrial Chemistry (CAMIC), School of Science, RMIT University, Melbourne, VIC 3000, Australia.
- Laboratory of Advanced Catalysis for Sustainability, School of Chemistry, University of Sydney, Sydney, NSW 2006, Australia
| |
Collapse
|
2
|
Li W, Zhao D, Lei N, Wen R, Li W, Dou M, Fan L. Luminescence sensing and electrocatslytic redox performances of a new stable Cadmium(II) coordination polymer. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
3
|
Roy E, Pal S, Kung C, Yu S, Nagar A, Lin C. A Polyaniline‐Supported, Chromium‐Based Metal‐Organic Framework for Electrochemical Sensing of Cadmium(II). ChemistrySelect 2022. [DOI: 10.1002/slct.202203574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ekta Roy
- Department of Chemistry Medi-Caps University Indore A.B. Road, Pigdamber, Rau, Indore 45333 India
| | - Souvik Pal
- Department of Chemical Engineering National Cheng Kung University 1 University Road Tainan city 70101, R.O.C. Taiwan
| | - Chung‐Wei Kung
- Department of Chemical Engineering National Cheng Kung University 1 University Road Tainan city 70101, R.O.C. Taiwan
| | - Sheng‐Sheng Yu
- Department of Chemical Engineering National Cheng Kung University 1 University Road Tainan city 70101, R.O.C. Taiwan
| | - Achala Nagar
- Department of Chemistry Government Engineering College Jhalawar Jhalawar Rajasthan 326023 India
| | - Chia‐Her Lin
- Department of Chemistry National Taiwan Normal University 11677 No. 88, Sec. 4, Ting-Chow Rd. Taipei Taiwan
| |
Collapse
|
4
|
Wang XF, Zhao JY, Jia MQ, Du Zhang X, Xu XB, Cheng JJ, Wang Y, Liu GX, Chen K. Study on the structure regulation and electrochemical properties of imidazole-based MOFs by small molecules. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
5
|
Al-Jumaili MHA, Ocak H, Torun L. Hydrogen-bonded ionic liquid crystals based on multi-armed structure: synthesis and characterization. MONATSHEFTE FUR CHEMIE 2022. [DOI: 10.1007/s00706-022-02969-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Kim D, Kim G, Han J, Jung O. Advances in
2D
coordination networks for single‐crystal‐to‐single crystal applications beyond confined pores. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12577] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Dongwon Kim
- Department of Chemistry Pusan National University Pusan Korea
| | - Gyeongwoo Kim
- Department of Chemistry Pusan National University Pusan Korea
| | - Jihun Han
- Department of Chemistry Pusan National University Pusan Korea
| | - Ok‐Sang Jung
- Department of Chemistry Pusan National University Pusan Korea
| |
Collapse
|
7
|
Gu XY, Bai RL, Cui JW. Two photoluminescent Zn(II) complexes: Protection evaluation against cancer disease by reducing activation of PI3K/Akt signaling pathway. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Application value of a new Zn(II)-coordination polymer in enteral nutrition rehabilitation by enhancing intestinal villi transport function. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
9
|
Hok L, Vianello R, Matkovic-Calogovic D, Karanovic L, Roca S, Jaźwiński J, Tašner M, Vušak D, Đaković M, Popovic Z. A series of nickel(II) thiocyanate complexes comprising various molar contents of isonicotinamide and water as ligands or co-crystallized moieties – An experimental and computational study. CrystEngComm 2022. [DOI: 10.1039/d2ce00847e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Seven complexes, [Ni(NCS)2(isn)2(H2O)2]⋅2H2O (1), [Ni(NCS)2(isn)2(H2O)2] (2), [Ni(NCS)2(isn)3(H2O)]·2.5H2O (3), [Ni(NCS)2(isn)3(H2O)]·3[Ni(NCS)2(isn)4]·9H2O (4), [Ni(NCS)2(isn)4]·3H2O (5), [Ni(NCS)2(isn)4]·2(isn) (6) and [Ni(NCS)2(isn)4]·1.25H2O (7), of Ni(II) thiocyanate with isonicotinamide (isn = pyridine-4-carboxamide) and water as ligands of...
Collapse
|