1
|
Zhao J, Fan H, Zhong G, Wang C, Li Z, Bi J, Xie J, Chen T, Deng J, Li J, Tan B. Improving the ion sieving performance of MOF polycrystalline membranes based on interface modification. Dalton Trans 2025; 54:7801-7809. [PMID: 40261047 DOI: 10.1039/d5dt00724k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
Metal-organic framework (MOF) membranes exhibit promising potential for high-precision molecule and ion sieving due to their uniform and tunable pore structures. Nevertheless, it remains a challenge to address interfacial compatibility to obtain a high-performance MOF membrane. This is because there is a weak interfacial interaction between the MOF and the substrate, which leads to non-selective areas. This work presents an interface-coating method to facilitate dense nucleation and rapid growth of MOF crystals on the substrate towards reinforcing interaction and eliminating defects. Polydopamine (PDA) and β-cyclodextrin (β-CD) were co-assembled on polyvinylidene fluoride (PVDF) substrates to modify the surface chemistry and enhance interfacial compatibility, thereby facilitating the dense growth of ZIF-8. The ZIF-8/PVDF membranes demonstrated an excellent K+ permeance of 0.33 mol m-2 h-1 and a K+/Mg2+ selectivity of 30.16. The simulation results indicate that the channel of Mg2+ through ZIF-8 must overcome a greater transport energy barrier than that of K+, resulting in a higher selectivity of K+/Mg2+.
Collapse
Affiliation(s)
- Jianfei Zhao
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Haoran Fan
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Gaofeng Zhong
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Chenfeng Wang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Zhan Li
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Jintong Bi
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Jingle Xie
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Tongdan Chen
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Juanli Deng
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Jiang Li
- School of Materials Science and Engineering, Chang'an University, Xi'an 710062, China.
| | - Bojun Tan
- Xi'an Modern Chemistry Research Institute, Xi'an 710065, China.
| |
Collapse
|
2
|
Si CD, Chen XY, Li M, Zhang JB, Pan FF, Liu JC, Liao TL, Yuan K, Muddassir M, Sakiyama H. Insights into the MOF-Based Classic Configuration for the Differences in Effective Dye Adsorption, Magnetic Properties, and Computational Analyses. Inorg Chem 2025; 64:1098-1109. [PMID: 39778132 DOI: 10.1021/acs.inorgchem.4c04705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Two 3D/2D anionic metal-organic frameworks (MOFs), [Cu(HL)]n (1) and [Mn3(L)2(DMF)4]n (2) (DMF = N,N-dimethylformamide), were synthesized by the solvothermal reaction of metal salts and 5'-(4-carboxyphenyl)-2',4',6'-triethyl-[1,1':3',1″-terphenyl]-4,4″-dicarboxylic acid (H3L). Single-crystal X-ray diffraction analyses revealed that complex 1 shows three-dimensional (3D) frameworks with a (3,6)-connected 3-fold interpenetrated topology with the Schläfli symbols of {4.62}2{42.610.83}, whereas the topology of the two-dimensional (2D) architecture can be defined as 2-fold stacked layers with the Schläfli symbols of {43}2{46.66.83} for complex 2. In addition, density functional theory calculations, together with UV-vis adsorption spectroscopy, zeta potential, effective aperture size analysis, TEM, and SEM, were also performed to determine the accurate adsorption sites and significant differences in dye adsorption for complexes 1 and 2. Interestingly, UV-vis studies confirm that Mn-MOF displays remarkable adsorption efficiency for cationic rhodamine B, methylene blue, malachite green, and methyl green, and the removal rate reached 95.2, 95.0, 87.0, and 78.0%, respectively, while almost no adsorption capacity was detected for anionic cresol red and methyl orange. However, Cu-MOF failed to efficiently adsorb any selected dyes. Moreover, the magnetic properties were also investigated through experimental and theoretical calculations in detail, which revealed the weak and stronger antiferromagnetic interactions that occurred between Cu(II) and Mn(II) centers, respectively. Finally, this work provides the profound mechanisms for magnetism and dye adsorption.
Collapse
Affiliation(s)
- Chang-Dai Si
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, China
| | - Xue-Ying Chen
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, China
| | - Min Li
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, China
| | - Jian-Bin Zhang
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, China
| | - Feng-Feng Pan
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, China
| | - Jia-Cheng Liu
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Tian-Lu Liao
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, China
| | - Kun Yuan
- College of Chemical Engineering and Technology, Tianshui Normal University, Tianshui 741001, China
| | - Mohd Muddassir
- Department of Chemistry, College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hiroshi Sakiyama
- Department of Science, Faculty of Science, Yamagata University, 1-4-12 Kojirakawa, Yamagata 990-8560, Japan
| |
Collapse
|
3
|
Zheng LN, Xu LY, Yan YT, Ding T, Feng CC. Two Cu(II) coordination polymers based on isomeric N-heterocyclic multicarboxylate ligands: Construction and magnetic properties. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Chai J, Yuan L, Wang S, Li T, Wu M, Huang Z, Yin H. A series of novel Cu-based MOFs: syntheses, structural diversity, catalytic properties and mimic peroxidase activity for colorimetric detection of H 2O 2. NEW J CHEM 2022. [DOI: 10.1039/d2nj01981g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Three MOFs with three different types of Cu clusters have been synthesized. MOFs 1–3 efficiently catalyze the oxidation of cycloalkanes under mild conditions. Besides, MOFs 1–3 exhibited high peroxidase-like activity and could be applied for colorimetric detection of H2O2.
Collapse
Affiliation(s)
- Juan Chai
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Luohao Yuan
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shiwei Wang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Tong Li
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Mingxue Wu
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Zhiwei Huang
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| | - Hongfeng Yin
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, P. R. China
| |
Collapse
|