1
|
Saha S, Pramanik S, Pathak S, Das K, Sadhukhan R, Ghosh A, Goswami DK, Lee HM, Ortega-Castro J, Frontera A, Mukhopadhyay S. Noncoordinating Anions as Key Modulators of Supramolecular Structures, Optical and Electrical Properties in Nickel(II) Complexes. ACS OMEGA 2024; 9:44494-44506. [PMID: 39524615 PMCID: PMC11541438 DOI: 10.1021/acsomega.4c06270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/05/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024]
Abstract
This study explores the synthesis, structural characterization, and examination of two nickel(II) complexes, [Ni(N 3 L 1 )2](NO3)2 (complex 1) and [Ni(N 3 L 1 )2](ClO4)2 (complex 2), using the newly synthesized organic heterocyclic chelating ligand N 3 L 1 [4-imidazole-2,6-di(pyrazinyl)pyridine]. Through single-crystal X-ray diffraction, we have detailed the crystal structures of these complexes, highlighting their distorted octahedral geometries and diverse supramolecular interactions including π···π stacking, anion···π, and hydrogen bonding. These interactions crucially influence the formation of distinct one- and two-dimensional supramolecular architectures. Density functional theory (DFT) calculations were utilized to probe these noncovalent interactions, revealing insights into their stereoelectronic influence and stability in the solid state. Additionally, the electronic properties of the complexes were explored through their electrical characterizations in Schottky diodes, which suggest the potential of these complexes in Schottky diode based electronic devices applications. Notably, complex 2, incorporating perchlorate anions, exhibited better electrical properties than complex 1. This work aims to elucidate the role of noncoordinating counteranions in the structural integrity and photophysical behavior of these complexes, while also providing a structure-function correlation through detailed theoretical analysis.
Collapse
Affiliation(s)
- Subhajit Saha
- Department
of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Samit Pramanik
- Department
of Chemistry, Jadavpur University, Kolkata 700032, India
| | - Sudipta Pathak
- Department
of Chemistry, Haldia Government College, Debhog, Purba Medinipur, West Bengal 721657, India
| | - Kinsuk Das
- Department
of Chemistry, Chandernagore College, Hooghly, West Bengal 712136, India
| | - Riya Sadhukhan
- Organic
Electronics Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Arnab Ghosh
- Department
of Physics and Natural Science Research Centre of Belda College under
Vidyasagar University, Belda, West Bengal 721424, India
| | - Dipak K. Goswami
- Organic
Electronics Laboratory, Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Hon Man Lee
- Department
of Chemistry, National Changhua University
of Education, Changhua 50058, Taiwan
| | - Joaquín Ortega-Castro
- Departament
de Química, Universitat de les Illes
Balears, Crta. deValldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain
| | - Antonio Frontera
- Departament
de Química, Universitat de les Illes
Balears, Crta. deValldemossa km 7.5, 07122 Palma de Mallorca (Baleares), Spain
| | | |
Collapse
|
2
|
Zou Y, Bao SJ, Tang H, Zhang HN, Jin GX. Synergizing Steric Hindrance and Stacking Interactions To Facilitate the Controlled Assembly of Multiple 4 1 Metalla-Knots and Pseudo-Solomon Links. Angew Chem Int Ed Engl 2024; 63:e202410722. [PMID: 38965047 DOI: 10.1002/anie.202410722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/06/2024]
Abstract
In this work, a noncoplanar terphenyl served as a building block to synthesize a novel 3,3'-substituted bipyridyl ligand (L1) which further reacted with binuclear half-sandwich units A/B, giving rise to two aesthetic 41 metalla-knots in high yields via a coordination-driven self-assembly strategy. Furthermore, given the inherent compactness of the 41 metalla-knots, it creates favorable conditions for the emergence of steric repulsion. We focused on progressively introducing nitrogen atoms featuring a lone pair of electrons (LPEs) into ligand L1 to manipulate the balance of H⋅⋅⋅H/LPEs⋅⋅⋅LPEs steric repulsion during the assembly process, ultimately achieving controlled assembly from 41 metalla-knots to the pseudo-Solomon link and then to molecular tweezer-like assembly facilitated by stacking interactions. All the assemblies were well characterized by solution-state NMR techniques, ESI-TOF/MS, and single-crystal X-ray diffraction. The evolutionary process of the topological architectures is equivalent to visualizing the synergistic effect of steric hindrance and stacking interactions on structural assembly, providing a new avenue for achieving the controlled synthesis of different topologies.
Collapse
Affiliation(s)
- Yan Zou
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Shu-Jin Bao
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Haitong Tang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Hai-Ning Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| | - Guo-Xin Jin
- State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai, 200438, P. R. China
| |
Collapse
|
3
|
Lv M, Hu H, Adila A, Yan Y, Liu Y, Liu Z. Tunability of Photovoltaic Functions via Halogen Substitution [(Ade) 2 CdX 4](X = Cl, Br): A Class of Three-Dimensional Organic-Inorganic Hybrid Materials. Molecules 2024; 29:2773. [PMID: 38930838 PMCID: PMC11487418 DOI: 10.3390/molecules29122773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/17/2024] [Accepted: 05/29/2024] [Indexed: 06/28/2024] Open
Abstract
Two new three-dimensional organic-inorganic hybrid crystalline materials, [(Ade)2 CdCl4] (1) and [(Ade)2 CdBr4] (2), were obtained by the slow evaporation of adenine (Ade) and cadmium chloride in aqueous solution at room temperature with hydrochloric acid and hydrobromic acid used as halogen sources. The structural, thermal, optical, and electrical properties were characterized by single-crystal X-ray diffraction, infrared spectroscopy, thermogravimetric analysis, variable-temperature-variable-frequency dielectric constant analysis, and electrochemical tests. With increasing the substitution of Cl by Br, the composition of the material changed and the space group shifted from P-1 to P21/m, with a significant blue-shift in the fluorescence emission. Changing the temperature induced the deformation of the three-dimensional framework structure formed by hydrogen bonding interactions, leading to dielectric anomalies. Cyclic voltammetry tests showed the good reversibility of the electrolysis process. The structural diversity of the complexes was realized by modulating the halogen composition, and a new method for designing novel organic-inorganic hybrids with controllable photoelectric functionality was proposed.
Collapse
Affiliation(s)
- Meixia Lv
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (M.L.); (H.H.); (A.A.); (Y.Y.)
| | - Hongzhi Hu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (M.L.); (H.H.); (A.A.); (Y.Y.)
- Xinjiang Sub-Center National Engineering Research Center of Novel Equipment for Polymer Processing, Urumqi 830052, China
| | - Abuduheni Adila
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (M.L.); (H.H.); (A.A.); (Y.Y.)
| | - Yibo Yan
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (M.L.); (H.H.); (A.A.); (Y.Y.)
- Xinjiang Sub-Center National Engineering Research Center of Novel Equipment for Polymer Processing, Urumqi 830052, China
| | - Yang Liu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (M.L.); (H.H.); (A.A.); (Y.Y.)
- Xinjiang Sub-Center National Engineering Research Center of Novel Equipment for Polymer Processing, Urumqi 830052, China
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, Urumqi 830052, China
| | - Zunqi Liu
- Chemistry and Chemical Engineering College, Xinjiang Agricultural University, Urumqi 830052, China; (M.L.); (H.H.); (A.A.); (Y.Y.)
- Xinjiang Sub-Center National Engineering Research Center of Novel Equipment for Polymer Processing, Urumqi 830052, China
- Xinjiang Key Laboratory of Agricultural Chemistry and Biomaterials, Urumqi 830052, China
| |
Collapse
|
4
|
De S, Das G. Surfactant-induced disaggregation of a quinoxaline AIEgen scaffold: aggregation aptitude in the solid and solution states. SOFT MATTER 2023; 19:6116-6121. [PMID: 37538008 DOI: 10.1039/d3sm00638g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2023]
Abstract
We have designed five propellor-shaped molecules based on the quinoxaline scaffold with a functional group variation. They exhibit aggregation-induced emission, and the responses of these congeners regarding good solvents and poor solvents are investigated both spectroscopically and microscopically. Solid- as well as solution-state parallel analysis of the aggregation facet is laid out. Notably, L2 interacts specifically with a cationic surfactant, unlike other congeners where the mechanism proceeds via disaggregation. Real sample analysis was carried out on freshwater samples as well as waste effluent samples from domestic households and industries, thus projecting the analytical and environmental significance.
Collapse
Affiliation(s)
- Sagnik De
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Gopal Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
5
|
Synthesis, crystal structure and computational studies of new steroidal hemisuccinyl ester derivatives. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
6
|
Janczak J. Ethylenediamine control of the supramolecular chemistry of magnesium phthalocyanine. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.121362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Gurumallappa, Jayashankar J, Hema M, Karthik C, Suma D, Kumaraswamy S, Lokanath N, Mallu P, Nethaji M, Lu N. Enchant O H⋅⋅⋅O interactions in hydrated 6-amino-2-methoxypyrimidin-4(3H)one resembles as water flow in the channel: Crystallographic and theoretical investigations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
8
|
Chen R, Li Q, Xu K, Zhang Z, Wang T, Ma J, Xi Y, Cao L, Teng B, Wu H. Molecular structure, vibrational spectroscopy (FT-IR, Raman), solvent effects, molecular docking and DFT studies of 1-(4-chlorophenyl)-3-(4-ethoxyphenyl)-prop-2-en-1-one. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|