1
|
Leonel G, Lennox CB, Marrett JM, Friščić T, Navrotsky A. Crystallographic and Compositional Dependence of Thermodynamic Stability of [Co(II), Cu(II), and Zn(II)] in 2-Methylimidazole-Containing Zeolitic Imidazolate Frameworks. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:7189-7195. [PMID: 37719037 PMCID: PMC10501375 DOI: 10.1021/acs.chemmater.3c01464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/02/2023] [Indexed: 09/19/2023]
Abstract
We report the first systematic study experimentally investigating the effect of changes to the divalent metal node on the thermodynamic stability of three-dimensional (3D) and two-dimensional (2D) zeolitic imidazolate frameworks (ZIFs) based on 2-methylimidazolate linkers. In particular, the comparison of enthalpies of formation for materials based on cobalt, copper, and zinc suggests that the use of nodes with larger ionic radius metals leads to the stabilization of the porous sodalite topology with respect to the corresponding higher-density diamondoid (dia)-topology polymorphs. The stabilizing effect of metals is dependent on the framework topology and dimensionality. With previous works pointing to solvent-mediated transformation of 2D ZIF-L structures to their 3D analogues in the sodalite topology, thermodynamic measurements show that contrary to popular belief, the 2D frameworks are energetically stable, thus shedding light on the energetic landscape of these materials. Additionally, the calorimetric data confirm that a change in the dimensionality (3D → 2D) and the presence of structural water within the framework can stabilize structures by as much as 40 kJ·mol-1, making the formation of zinc-based ZIF-L material under such conditions thermodynamically preferred to the formation of both ZIF-8 and its dense, dia-topology polymorph.
Collapse
Affiliation(s)
- Gerson
J. Leonel
- Navrotsky
Eyring Center for Materials of the Universe, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- School
of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| | - Cameron B. Lennox
- School
of Chemistry Haworth Building, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal QC H2L 0B7, Canada
| | - Joseph M. Marrett
- School
of Chemistry Haworth Building, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal QC H2L 0B7, Canada
| | - Tomislav Friščić
- School
of Chemistry Haworth Building, University
of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
- Department
of Chemistry, McGill University, 801 Sherbrooke St. W., Montreal QC H2L 0B7, Canada
| | - Alexandra Navrotsky
- School
of Molecular Sciences and Center for Materials of the Universe, Arizona State University, Tempe, Arizona 85287, United States
- Navrotsky
Eyring Center for Materials of the Universe, School of Molecular Sciences, Arizona State University, Tempe, Arizona 85287, United States
- School
of Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona 85287, United States
| |
Collapse
|
2
|
Functional carbon-supported nanocatalysts for biomass conversion. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
3
|
Abu Nayem SM, Ahmad A, Shaheen Shah S, Saeed Alzahrani A, Saleh Ahammad AJ, Aziz MA. High Performance and Long-cycle Life Rechargeable Aluminum Ion Battery: Recent Progress, Perspectives and Challenges. CHEM REC 2022; 22:e202200181. [PMID: 36094785 DOI: 10.1002/tcr.202200181] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/21/2022] [Indexed: 12/14/2022]
Abstract
The rising energy crisis and environmental concerns caused by fossil fuels have accelerated the deployment of renewable and sustainable energy sources and storage systems. As a result of immense progress in the field, cost-effective, high-performance, and long-life rechargeable batteries are imperative to meet the current and future demands for sustainable energy sources. Currently, lithium-ion batteries are widely used, but limited lithium (Li) resources have caused price spikes, threatening progress toward cleaner energy sources. Therefore, post-Li, batteries that utilize highly abundant materials leading to cost-effective energy storage solutions while offering desirable performance characteristics are urgently needed. Aluminum-ion battery (AIB) is an attractive concept that uses highly abundant aluminum while offering a high theoretical gravimetric and volumetric capacity of 2980 mAh g-1 and 8046 mAh cm-3 , respectively. As a result, intensified efforts have been made in recent years to utilize numerous electrolytes, anodes, and cathode materials to improve the electrochemical performance of AIBs, and potentially create high-performance, low-cost, and safe energy storage devices. Herein, recent progress in the electrolyte, anode, and cathode active materials and their utilization in AIBs and their related characteristics are summarized. Finally, the main challenges facing AIBs along with future directions are highlighted.
Collapse
Affiliation(s)
- S M Abu Nayem
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Aziz Ahmad
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia
| | - Syed Shaheen Shah
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Physics Department, King Fahd University of Petroleum & Minerals, KFUPM Box 5047, Dhahran, 31261, Saudi Arabia
| | - Atif Saeed Alzahrani
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,Materials Science and Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| | - A J Saleh Ahammad
- Department of Chemistry, Jagannath University, Dhaka, 1100, Bangladesh
| | - Md Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES), King Fahd University of Petroleum & Minerals, KFUPM Box 5040, Dhahran, 31261, Saudi Arabia.,K.A.CARE Energy Research & Innovation Center, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia
| |
Collapse
|
4
|
3D porous carbon network-reinforced defective CoFeOx@C as a high-rate electrode for lithium-ion batteries. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
5
|
Yan C, Lv C, Jia BE, Zhong L, Cao X, Guo X, Liu H, Xu W, Liu D, Yang L, Liu J, Hng HH, Chen W, Song L, Li S, Liu Z, Yan Q, Yu G. Reversible Al Metal Anodes Enabled by Amorphization for Aqueous Aluminum Batteries. J Am Chem Soc 2022; 144:11444-11455. [PMID: 35723429 DOI: 10.1021/jacs.2c04820] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Aqueous aluminum metal batteries (AMBs) are regarded as one of the most sustainable energy storage systems among post-lithium-ion candidates, which is attributable to their highest theoretical volumetric capacity, inherent safe operation, and low cost. Yet, the development of aqueous AMBs is plagued by the incapable aluminum plating in an aqueous solution and severe parasitic reactions, which results in the limited discharge voltage, thus making the development of aqueous AMBs unsuccessful so far. Here, we demonstrate that amorphization is an effective strategy to tackle these critical issues of a metallic Al anode by shifting the reduction potential for Al deposition. The amorphous aluminum (a-Al) interfacial layer is triggered by an in situ lithium-ion alloying/dealloying process on a metallic Al substrate with low strength. Unveiled by experimental and theoretical investigations, the amorphous structure greatly lowers the Al nucleation energy barrier, which forces the Al deposition competitive to the electron-stealing hydrogen evolution reaction (HER). Simultaneously, the inhibited HER mitigates the passivation, promoting interfacial ion transfer kinetics and enabling steady aluminum plating/stripping for 800 h in the symmetric cell. The resultant multiple full cells using Al@a-Al anodes deliver approximately a 0.6 V increase in the discharge voltage plateau compared to that of bare Al-based cells, which far outperform all reported aqueous AMBs. In both symmetric cells and full cells, the excellent electrochemical performances are achieved in a noncorrosive, low-cost, and fluorine-free Al2(SO4)3 electrolyte, which is ecofriendly and can be easily adapted for sustainable large-scale applications. This work brings an intriguing picture of the design of metallic anodes for reversible and high-voltage AMBs.
Collapse
Affiliation(s)
- Chunshuang Yan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.,School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Chade Lv
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.,School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Bei-Er Jia
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Lixiang Zhong
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xun Cao
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Xuelin Guo
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Hengjie Liu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Wenjie Xu
- National Synchrotron Radiation Laboratory, CAS Center for Excellence in Nanoscience, University of Science and Technology of China, Hefei, Anhui 230029, China
| | - Daobin Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Lan Yang
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Jiawei Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Huey Hoon Hng
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Wei Chen
- Department of Physics, National University of Singapore, Singapore 117542, Singapore
| | - Li Song
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Shuzhou Li
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Zheng Liu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore.,Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
6
|
Wang FX, Zhang ZC, Yi XH, Wang CC, Wang P, Wang CY, Yu B. A micron-sized Co-MOF sheet to activate peroxymonosulfate for efficient organic pollutant degradation. CrystEngComm 2022. [DOI: 10.1039/d2ce00791f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Co-MOF with a 2D morphology (BUC-92) was prepared, which exhibited outstanding rhodamine B (RhB) degradation performance via peroxymonosulfate (PMS) activation.
Collapse
Affiliation(s)
- Fu-Xue Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial, and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Zi-Chen Zhang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial, and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Xiao-Hong Yi
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial, and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial, and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial, and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Chao-Yang Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
- Beijing Energy Conservation & Sustainable Urban and Rural Development Provincial, and Ministry Co-construction Collaboration Innovation Center, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Baoyi Yu
- Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture, College of Biological Sciences Engineering, Beijing University of Agriculture, Beijing 102206, China
| |
Collapse
|