1
|
Dong J, Wu Z, HuangFu C, Su Y, Zheng X, Wu W, Sa B, Pei J, Jiao L, Zheng J, Zhan H, Wang Q. Interface Engineering for Efficient Photocarrier Generation and Transfer in Strongly Coupled Metallic/Semiconducting 1T'/2H MoS 2 Heterobilayers. ACS NANO 2024; 18:32868-32877. [PMID: 39541726 DOI: 10.1021/acsnano.4c11792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Developing alternative two-dimensional (2D) metallic/semiconducting (M/S) van der Waals heterostructures (vdWHs) along with an understanding of interfacial photocarrier behavior is crucial for designing high-performance optoelectronic devices. Here, we comprehensively explored the photophysical model of photocarrier generation and interfacial transfer in as-grown 2D 1T'/2H MoS2 vdWHs using various spectroscopic characterizations. We demonstrated the transitions of activated photocarrier transfer trajectories by tuning the pump photon energies across the 2H MoS2 bandgap. The importance of confined bilayer transfer systems and strong interlayer coupling at vdW interfaces for transfer efficiency was elucidated. Additionally, the fluorophlogopite substrate was found to be an external method for regulating photocarrier generation in individual 2H layers through the p-doping effect at the substrate-2H layer interfaces, and this influence was alleviated after introducing the 2H-1T' vdW interface. Particularly, 1T' MoS2 as a broadband hot carrier absorber enabled the ultrafast (∼133 fs) injection and extraction of energetic hot carriers into the 2H layer via a photothermionic emission mechanism, achieving a high efficiency of ∼41% under 900 nm photoexcitation at room temperature. Our work offers fundamental insights into the complex interfacial carrier photophysics in 2D M/S vdWHs, providing a way of constructing advanced multifunctional devices by using these emerging materials as active components and interface engineering.
Collapse
Affiliation(s)
- Junhao Dong
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zhanggui Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Changan HuangFu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yi Su
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaoyan Zheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Wensheng Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Baisheng Sa
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Jiajie Pei
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Liying Jiao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Jingying Zheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Hongbing Zhan
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
| | - Qianting Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou 350108, China
- School of Materials Science and Engineering, Xiamen University of Technology, Xiamen 361024, China
| |
Collapse
|
2
|
Lee L, Chiang CH, Shen YC, Wu SC, Shih YC, Yang TY, Hsu YC, Cyu RH, Yu YJ, Hsieh SH, Chen CH, Lebedev M, Chueh YL. Rational Design on Polymorphous Phase Switching in Molybdenum Diselenide-Based Memristor Assisted by All-Solid-State Reversible Intercalation toward Neuromorphic Application. ACS NANO 2023; 17:84-93. [PMID: 36575141 DOI: 10.1021/acsnano.2c04356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this work, a low-power memristor based on vertically stacked two-dimensional (2D) layered materials, achieved by plasma-assisted vapor reaction, as the switching material, with which the copper and gold metals as electrodes featured by reversible polymorphous phase changes from a conducting 1T-phase to a semiconducting 2H-one once copper cations interacted between vertical lamellar layers and vice versa, was demonstrated. Here, molybdenum diselenide was chosen as the switching material, and the reversible polymorphous phase changes activated by the intercalation of Cu cations were confirmed by pseudo-operando Raman scattering, transmission electron microscopy, and scanning photoelectron microscopy under high and low resistance states, respectively. The switching can be activated at about ±1 V with critical currents less than 10 μA with an on/off ratio approaching 100 after 100 cycles and low power consumption of ∼0.1 microwatt as well as linear weight updates controlled by the amount of intercalation. The work provides alternative feasibility of reversible and all-solid-state metal interactions, which benefits monolithic integrations of 2D materials into operative electronic circuits.
Collapse
Affiliation(s)
- Ling Lee
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Hsiu Chiang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ying-Chun Shen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shu-Chi Wu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Chuan Shih
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Tzu-Yi Yang
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yu-Chieh Hsu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ruei-Hong Cyu
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Yi-Jen Yu
- Instrument Center, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shang-Hsien Hsieh
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Chia-Hao Chen
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Mikhail Lebedev
- Laboratory of Functional Films and Coatings, Nikolaev Institute of inorganic chemistry SB RAS, Lavrent'ev ave. 3, Novosibirsk 630090, Russia
| | - Yu-Lun Chueh
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
- Department of Physics, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan
- Frontier Research Center on Fundamental and Applied Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|