1
|
Dos Santos DM, Moon JI, Kim DS, Bassous NJ, Marangon CA, Campana-Filho SP, Correa DS, Kang MH, Kim WJ, Shin SR. Hierarchical Chitin Nanocrystal-Based 3D Printed Dual-Layer Membranes Hydrogels: A Dual Drug Delivery Nano-Platform for Periodontal Tissue Regeneration. ACS NANO 2024; 18:24182-24203. [PMID: 39163106 DOI: 10.1021/acsnano.4c05558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Periodontitis, a prevalent chronic inflammatory disease caused by bacteria, poses a significant challenge to current treatments by merely slowing their progression. Herein, we propose an innovative solution in the form of hierarchical nanostructured 3D printed bilayer membranes that serve as dual-drug delivery nanoplatforms and provide scaffold function for the regeneration of periodontal tissue. Nanocomposite hydrogels were prepared by combining lipid nanoparticle-loaded grape seed extract and simvastatin, as well as chitin nanocrystals, which were then 3D printed into a bilayer membrane that possesses antimicrobial properties and multiscale porosity for periodontal tissue regeneration. The constructs exhibited excellent mechanical properties by adding chitin nanocrystals and provided a sustained release of distinct drugs over 24 days. We demonstrated that the bilayer membranes are cytocompatible and have the ability to induce bone-forming markers in human mesenchymal stem cells, while showing potent antibacterial activity against pathogens associated with periodontitis. In vivo studies further confirmed the efficacy of bilayer membranes in enhancing alveolar bone regeneration and reducing inflammation in a periodontal defect model. This approach suggests promising avenues for the development of implantable constructs that not only combat infections, but also promote the regeneration of periodontal tissue, providing valuable insights into advanced periodontitis treatment strategies.
Collapse
Affiliation(s)
- Danilo Martins Dos Santos
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos, São Paulo 13560-970, Brazil
| | - Jae-I Moon
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Da-Seul Kim
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
| | - Nicole Joy Bassous
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
| | - Crisiane Aparecida Marangon
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos, São Paulo 13560-970, Brazil
| | - Sergio Paulo Campana-Filho
- Sao Carlos Institute of Chemistry/University of São Paulo, Av. Trabalhador Sao-carlense, 400, São Carlos, São Paulo 13566-590, Brazil
| | - Daniel Souza Correa
- Nanotechnology National Laboratory for Agriculture (LNNA), Embrapa Instrumentação, São Carlos, São Paulo 13560-970, Brazil
| | - Min-Ho Kang
- Department of Biomedical-Chemical Engineering, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Woo-Jin Kim
- Department of Molecular Genetics, School of Dentistry and Dental Research Institute, Dental Multi-omics Center, Seoul National University, Seoul 03080, Republic of Korea
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Harvard Medical School, and Brigham and Women's Hospital, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
2
|
Li X, Lin H, Yu Y, Lu Y, He B, Liu M, Zhuang L, Xu Y, Li W. In Situ Rapid-Formation Sprayable Hydrogels for Challenging Tissue Injury Management. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400310. [PMID: 38298099 DOI: 10.1002/adma.202400310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 01/20/2024] [Indexed: 02/02/2024]
Abstract
Rapid-acting, convenient, and broadly applicable medical materials are in high demand for the treatment of extensive and intricate tissue injuries in extremely medical scarcity environment, such as battlefields, wilderness, and traffic accidents. Conventional biomaterials fail to meet all the high criteria simultaneously for emergency management. Here, a multifunctional hydrogel system capable of rapid gelation and in situ spraying, addressing clinical challenges related to hemostasis, barrier establishment, support, and subsequent therapeutic treatment of irregular, complex, and urgent injured tissues, is designed. This hydrogel can be fast formed in less than 0.5 s under ultraviolet initiation. The precursor maintains an impressively low viscosity of 0.018 Pa s, while the hydrogel demonstrates a storage modulus of 0.65 MPa, achieving the delicate balance between sprayable fluidity and the mechanical strength requirements in practice, allowing flexible customization of the hydrogel system for differentiated handling and treatment of various tissues. Notably, the interactions between the component of this hydrogel and the cell surface protein confer upon its inherently bioactive functionalities such as osteogenesis, anti-inflammation, and angiogenesis. This research endeavors to provide new insights and designs into emergency management and complex tissue injuries treatment.
Collapse
Affiliation(s)
- Xiaolei Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
- Fels Cancer Institute for Personalized Medicine, Lewis-Katz School of Medicine, Temple University, Philadelphia, PA, 19140, USA
| | - Han Lin
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Yilin Yu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Yukun Lu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Bin He
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Meng Liu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Lin Zhuang
- School of Physics, State Key Laboratory of Optoelectronic Materials and Technologies, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yue Xu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| | - Weichang Li
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou, 510055, P. R. China
| |
Collapse
|
3
|
Haas S, Sun X, Conceição ALC, Horbach J, Pfeffer S. The new small-angle X-ray scattering beamline for materials research at PETRA III: SAXSMAT beamline P62. JOURNAL OF SYNCHROTRON RADIATION 2023; 30:1156-1167. [PMID: 37860939 PMCID: PMC10624033 DOI: 10.1107/s1600577523008603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/28/2023] [Indexed: 10/21/2023]
Abstract
The SAXSMAT beamline P62 (Small-Angle X-ray Scattering beamline for Materials Research) is a new beamline at the high-energy storage ring PETRA III at DESY. This beamline is dedicated to combined small- and wide-angle X-ray scattering (SAXS/WAXS) techniques for both soft and hard condensed matter systems. It works mainly in transmission geometry. The beamline covers an energy range from 3.5 keV to 35.0 keV, which fulfills the requirements of the user community to perform anomalous scattering experiments. Mirrors are used to reduce the intensity of higher harmonics. Furthermore, the mirrors and 2D compound refracting lenses can focus the beam down to a few micrometres at the sample position. This option with the high photon flux enables also SAXS/WAXS tensor tomography experiments to be performed at this new beamline in a relatively short time. The first SAXS/WAXS pattern was collected in August 2021, while the first user experiment was carried out two months later. Since January 2022 the beamline has been in regular user operation mode. In this paper the beamline optics and the SAXS/WAXS instrument are described and two examples are briefly shown.
Collapse
Affiliation(s)
- S. Haas
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| | - X. Sun
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| | - A. L. C. Conceição
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| | - J. Horbach
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| | - S. Pfeffer
- Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, Hamburg 22607, Germany
| |
Collapse
|
4
|
Quesada-Pérez M, Pérez-Mas L, Carrizo-Tejero D, Maroto-Centeno JA, Ramos-Tejada MDM, Martín-Molina A. Coarse-Grained Simulations of Release of Drugs Housed in Flexible Nanogels: New Insights into Kinetic Parameters. Polymers (Basel) 2022; 14:4760. [PMID: 36365754 PMCID: PMC9656477 DOI: 10.3390/polym14214760] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 09/17/2023] Open
Abstract
The diffusion-controlled release of drugs housed in flexible nanogels has been simulated with the help of a coarse-grained model that explicitly considers polymer chains. In these in silico experiments, the effect of its flexibility is assessed by comparing it with data obtained for a rigid nanogel with the same volume fraction and topology. Our results show that the initial distribution of the drug can exert a great influence on the release kinetics. This work also reveals that certain surface phenomena driven by steric interactions can lead to apparently counterintuitive behaviors. Such phenomena are not usually included in many theoretical treatments used for the analysis of experimental release kinetics. Therefore, one should be very careful in drawing conclusions from these formalisms. In fact, our results suggest that the interpretation of drug release curves in terms of kinetic exponents (obtained from the Ritger-Peppas Equation) is a tricky question. However, such curves can provide a first estimate of the drug diffusion coefficient.
Collapse
Affiliation(s)
- Manuel Quesada-Pérez
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, Linares, 23700 Jaén, Spain
| | - Luis Pérez-Mas
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, Linares, 23700 Jaén, Spain
| | - David Carrizo-Tejero
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, Linares, 23700 Jaén, Spain
| | - José-Alberto Maroto-Centeno
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, Linares, 23700 Jaén, Spain
| | - María del Mar Ramos-Tejada
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, Linares, 23700 Jaén, Spain
| | - Alberto Martín-Molina
- Departamento de Física Aplicada, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
| |
Collapse
|
5
|
Zhao BR, Li B. Molecular Simulation of Hopping Mechanisms of Nanoparticles in Regular Cross-Linked Polymer Networks. J Chem Phys 2022; 157:104901. [DOI: 10.1063/5.0098947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We use coarse-grained simulations to explore the diffusion mechanism of nanoparticles with different sizes at various nanoparticle-polymer interactions in regular cross-linked polymer networks. The long time diffusivities of nanoparticles show a non-monotonic tendency at various nanoparticle-polymer interactions, due to the intermittent hopping of nanoparticles through network cells. The preferred locations of small nanoparticles switch from the cell centers to the corner of cells as they interact with network more strongly, which results in the hopping energy barrier between different cells switching from cell center localization to adsorption on networks. Steric hindrance seriously hampers large nanoparticles from hopping to neighboring network cells, the interactions between nanoparticle and network enhance the network deformability and also affect the hopping of nanoparticles. The multiple constraint mechanisms result in the non-monotonic diffusivities of nanoparticles with different interactions and non-Brownian motions at different time scales. Our work illustrates the hopping mechanisms of nanoparticles in polymer networks from thermodynamic and dynamic points of view.
Collapse
Affiliation(s)
- Bo-Ran Zhao
- Sun Yat-sen University - Zhuhai Campus, China
| | - Bin Li
- School of Chemical Engineering and Technology, Sun Yat-sen University - Zhuhai Campus, China
| |
Collapse
|
6
|
Quesada-Pérez M, Maroto-Centeno JA, Ramos-Tejada MDM, Martín-Molina A. Coarse-Grained Simulations of Solute Diffusion in Crosslinked Flexible Hydrogels. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02178] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Manuel Quesada-Pérez
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, Linares 23700, Jaén, Spain
| | - José-Alberto Maroto-Centeno
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, Linares 23700, Jaén, Spain
| | - María del Mar Ramos-Tejada
- Departamento de Física, Escuela Politécnica Superior de Linares, Universidad de Jaén, Linares 23700, Jaén, Spain
| | - Alberto Martín-Molina
- Departamento de Física Aplicada, Universidad de Granada, Campus de Fuentenueva s/n, Granada 18071, Spain
- Instituto Carlos I de Física Teórica y Computacional, Universidad de Granada, Campus de Fuentenueva s/n, Granada 18071, Spain
| |
Collapse
|
7
|
Klett K, Cherstvy AG, Shin J, Sokolov IM, Metzler R. Non-Gaussian, transiently anomalous, and ergodic self-diffusion of flexible dumbbells in crowded two-dimensional environments: Coupled translational and rotational motions. Phys Rev E 2022; 104:064603. [PMID: 35030844 DOI: 10.1103/physreve.104.064603] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 11/18/2021] [Indexed: 12/22/2022]
Abstract
We employ Langevin-dynamics simulations to unveil non-Brownian and non-Gaussian center-of-mass self-diffusion of massive flexible dumbbell-shaped particles in crowded two-dimensional solutions. We study the intradumbbell dynamics of the relative motion of the two constituent elastically coupled disks. Our main focus is on effects of the crowding fraction ϕ and of the particle structure on the diffusion characteristics. We evaluate the time-averaged mean-squared displacement (TAMSD), the displacement probability-density function (PDF), and the displacement autocorrelation function (ACF) of the dimers. For the TAMSD at highly crowded conditions of dumbbells, e.g., we observe a transition from the short-time ballistic behavior, via an intermediate subdiffusive regime, to long-time Brownian-like spreading dynamics. The crowded system of dimers exhibits two distinct diffusion regimes distinguished by the scaling exponent of the TAMSD, the dependence of the diffusivity on ϕ, and the features of the displacement-ACF. We attribute these regimes to a crowding-induced transition from viscous to viscoelastic diffusion upon growing ϕ. We also analyze the relative motion in the dimers, finding that larger ϕ suppress their vibrations and yield strongly non-Gaussian PDFs of rotational displacements. For the diffusion coefficients D(ϕ) of translational and rotational motion of the dumbbells an exponential decay with ϕ for weak and a power-law variation D(ϕ)∝(ϕ-ϕ^{★})^{2.4} for strong crowding is found. A comparison of simulation results with theoretical predictions for D(ϕ) is discussed and some relevant experimental systems are overviewed.
Collapse
Affiliation(s)
- Kolja Klett
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Andrey G Cherstvy
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.,Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Jaeoh Shin
- Department of Chemistry, Rice University, Houston, Texas 77005, USA.,Center for Theoretical Biological Physics, Rice University, Houston, Texas 77005, USA
| | - Igor M Sokolov
- Institut für Physik, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany.,IRIS Adlershof, Zum Großen Windkanal 6, 12489 Berlin, Germany
| | - Ralf Metzler
- Institute of Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| |
Collapse
|