1
|
Lahrar EH, Merlet C. Investigating the effect of particle size distribution and complex exchange dynamics on NMR spectra of ions diffusing in disordered porous carbons through a mesoscopic model. Faraday Discuss 2025; 255:355-369. [PMID: 39282768 DOI: 10.1039/d4fd00082j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Ion adsorption and dynamics in porous carbons are crucial for many technologies, such as energy storage and desalination. Nuclear magnetic resonance (NMR) spectroscopy is a key method to investigate such systems thanks to the possibility of distinguishing adsorbed (in-pore) and bulk (ex-pore) species in the spectra. However, the large variety of magnetic environments experienced by the ions adsorbed in the particles and the existence of dynamic exchange between the inside of the particles and the bulk renders the interpretation of the NMR experiments very complex. In this work, we optimise and apply a mesoscopic model to simulate NMR spectra of ions in systems where carbon particles of different sizes can be considered. We demonstrate that even for monodisperse systems, complex NMR spectra, with broad and narrow peaks, can be observed. We then show that the inclusion of polydispersity is essential to recover some experimentally observed features, such as the co-existence of peaks assigned to in-pore, exchange and bulk species. Indeed, the variety of exchange rates between in-pore and ex-pore environments, present in experiments but not taken into account in analytical models, is necessary to reproduce the complexity of experimental NMR spectra.
Collapse
Affiliation(s)
- El Hassane Lahrar
- Sorbonne Université, CNRS, Physicochimie des Électrolytes et Nanosystèmes Interfaciaux, F-75005 Paris, France.
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), Fédération de Recherche CNRS 3459, HUB de l'Énergie, Rue Baudelocque, 80039 Amiens, France
| | - Céline Merlet
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), Fédération de Recherche CNRS 3459, HUB de l'Énergie, Rue Baudelocque, 80039 Amiens, France
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, 31062 Toulouse cedex 9, France.
| |
Collapse
|
2
|
Liu X, Lyu D, Merlet C, Leesmith MJA, Hua X, Xu Z, Grey CP, Forse AC. Structural disorder determines capacitance in nanoporous carbons. Science 2024; 384:321-325. [PMID: 38635707 DOI: 10.1126/science.adn6242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024]
Abstract
The difficulty in characterizing the complex structures of nanoporous carbon electrodes has led to a lack of clear design principles with which to improve supercapacitors. Pore size has long been considered the main lever to improve capacitance. However, our evaluation of a large series of commercial nanoporous carbons finds a lack of correlation between pore size and capacitance. Instead, nuclear magnetic resonance spectroscopy measurements and simulations reveal a strong correlation between structural disorder in the electrodes and capacitance. More disordered carbons with smaller graphene-like domains show higher capacitances owing to the more efficient storage of ions in their nanopores. Our findings suggest ways to understand and exploit disorder to achieve highly energy-dense supercapacitors.
Collapse
Affiliation(s)
- Xinyu Liu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Dongxun Lyu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Céline Merlet
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, Cedex 9, 31062 Toulouse, France
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), Fédération de Recherche CNRS 3459, 80039 Amiens, France
| | | | - Xiao Hua
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, UK
| | - Zhen Xu
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Clare P Grey
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Alexander C Forse
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| |
Collapse
|
3
|
Sasikumar A, Merlet C. Investigating particle size effects on NMR spectra of ions diffusing in porous carbons through a mesoscopic model. SOLID STATE NUCLEAR MAGNETIC RESONANCE 2023; 126:101883. [PMID: 37329858 DOI: 10.1016/j.ssnmr.2023.101883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
Characterizing ion adsorption and diffusion in porous carbons is essential to understand the performance of such materials in a range of key technologies such as energy storage and capacitive deionisation. Nuclear Magnetic Resonance (NMR) spectroscopy is a powerful technique to get insights in these systems thanks to its ability to distinguish between bulk and adsorbed species and to its sensitivity to dynamic phenomena. Nevertheless, a clear interpretation of the experimental results is sometimes rendered difficult by the various factors affecting NMR spectra. A mesoscopic model to predict NMR spectra of ions diffusing in carbon particles is adapted to include dynamic exchange between the intra-particle space and the bulk electrolyte surrounding the particle. A systematic study of the particle size effect on the NMR spectra for different distributions of magnetic environments in the porous carbons is conducted. The model demonstrates the importance of considering a range of magnetic environments, instead of a single chemical shift value corresponding to adsorbed species, and of including a range of exchange rates (between in and out of the particle), instead of a single timescale, to predict realistic NMR spectra. Depending on the pore size distribution of the carbon particle and the ratio between bulk and adsorbed species, both the NMR linewidth and peak positions can be largely influenced by the particle size.
Collapse
Affiliation(s)
- Anagha Sasikumar
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, 31062, Toulouse, cedex 9, France; Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), Fédération de Recherche CNRS 3459, HUB de l'Énergie, Rue Baudelocque, 80039, Amiens, France
| | - Céline Merlet
- CIRIMAT, Université Toulouse 3 Paul Sabatier, Toulouse INP, CNRS, Université de Toulouse, 118 Route de Narbonne, 31062, Toulouse, cedex 9, France; Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), Fédération de Recherche CNRS 3459, HUB de l'Énergie, Rue Baudelocque, 80039, Amiens, France.
| |
Collapse
|
4
|
Sasikumar A, Griffin JM, Merlet C. Understanding the Chemical Shifts of Aqueous Electrolyte Species Adsorbed in Carbon Nanopores. J Phys Chem Lett 2022; 13:8953-8962. [PMID: 36135796 DOI: 10.1021/acs.jpclett.2c02260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Interfaces between aqueous electrolytes and nanoporous carbons are involved in a number of technological applications such as energy storage and capacitive deionization. Nuclear magnetic spectroscopy is a very useful tool to characterize ion adsorption in such systems thanks to its nuclei specificity and the ability to distinguish between ions in the bulk and in pores. We use complementary methods (density functional theory, molecular dynamics simulations, and a mesoscopic model) to investigate the relative importance of various effects on the chemical shifts of adsorbed species: ring currents, ion organization in pores of various sizes, specific ion-carbon interactions, and hydration. We show that ring currents and ion organization are predominant for the determination of chemical shifts in the case of Li+ ions and hydrogen atoms of water. For the large Rb+ and Cs+ ions, the additional effect of the hydration shell should be considered to predict chemical shifts in agreement with experiments.
Collapse
Affiliation(s)
- Anagha Sasikumar
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse cedex 9, France
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), Fédération de Recherche CNRS 3459, HUB de l'Énergie, Rue Baudelocque, 80039 Amiens, France
| | - John M Griffin
- Department of Chemistry, Lancaster University, Lancaster LA1 4YB, U.K
| | - Céline Merlet
- CIRIMAT, Université de Toulouse, CNRS, Université Toulouse 3 - Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse cedex 9, France
- Réseau sur le Stockage Électrochimique de l'Énergie (RS2E), Fédération de Recherche CNRS 3459, HUB de l'Énergie, Rue Baudelocque, 80039 Amiens, France
| |
Collapse
|