1
|
Zhang H, Liu Y, Wang X, Feng K, Wang Q, Chen Z, Jiang Z. Research Progress in Ionic Liquid-Based Electrolytes for Electrochromic Devices. Molecules 2025; 30:973. [PMID: 40005282 PMCID: PMC11857972 DOI: 10.3390/molecules30040973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Electrochromic (EC) technology has become one of the smart technologies with the most potential for development and application at this stage. Based on electrochromic devices (ECDs), this technology has shown extraordinary potential in the fields of smart windows, display devices, and sensing systems. With the optimization and iteration of various core components in ECDs, the electrolyte layer, a key component, evolved from its initial liquid state to a quasi-solid state and solid state. As driven by increasing application demands, the development trend indicates that all-solid-state, transparent electrolytes will likely become the future form of the electrolyte layer. Recently, the application of ionic liquid (IL)-based electrolytes in the field of electrochromism attracted a lot of attention due to their ability to bring outstanding EC cycling stability, thermal stability, and a wider operating voltage range to ECDs, and they are regarded as the new generation of electrolyte materials with the most potential for application. Although compared with conventional electrolytes, IL-based electrolytes have the characteristics of high price, high viscosity, and low conductivity, they are still considered the most promising electrolyte materials for applications. However, so far, there has been a lack of comprehensive analysis reports on "Research progress in ionic liquid-based electrolytes for electrochromic devices" within the EC field. In this article, the research progress of IL-based electrolytes in ECDs will be summarized from three perspectives: liquid, quasi-solid, and solid state. The future development directions of IL-based electrolytes for ECDs are discussed.
Collapse
Affiliation(s)
| | | | | | | | | | - Zheng Chen
- Key Laboratory of High-Performance Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Changchun 130012, China; (H.Z.)
| | - Zhenhua Jiang
- Key Laboratory of High-Performance Plastics, Ministry of Education, National and Local Joint Engineering Laboratory for Synthesis Technology of High-Performance Polymers, College of Chemistry, Jilin University, Changchun 130012, China; (H.Z.)
| |
Collapse
|
2
|
Liu HQ, Wang YL, Li B. Molecular insights into the nanoconfinement effect on the structure and dynamics of ionic liquids in carbon nanotubes. Phys Chem Chem Phys 2024; 26:14691-14704. [PMID: 38716569 DOI: 10.1039/d4cp00695j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The properties and applications of ionic liquids (ILs) have been widely investigated when they are confined within nanochannels such as carbon nanotubes (CNTs). The confined ILs exhibit very different properties from their bulk state due to a nanoconfinement effect, which plays an important role in the performances of devices with ILs. In this work, we studied the effect of the charge carried by CNTs on confined ILs inside CNTs using molecular dynamics simulations. In charged CNTs, cations and anions are distributed separately along the radial directions, and the transition of orientations of the cations between parallel and vertical to CNTs occurs by changing the charge state of CNTs. The number of hydrogen bonds (HBs) formed by the confined ILs can be reduced by switching the surface charge of CNTs from positive to negative due to the contact modes between cations and anions as well as the distributions of cations in CNTs. The diffusivities along and vertical to the axial direction of CNTs were found to be non-monotonic owing to the "trade-off" effect from both ion pair interlocking and anchoring ILs on the CNT walls. Additionally, the region-dependent dynamics of ILs were also related to the intermolecular interactions in different regions of CNTs. Furthermore, the vibrational modes of ILs were obviously influenced in highly charged CNTs as determined by calculating the density of vibrational states, which demonstrated the transitions in the structure and interactions. The density distributions changed from single layer to double layers when increasing the pore size of neutral CNTs while the hydrogen bonds exhibited a non-monotonic tendency versus the pore sizes. Our results might help to understand the structure and dynamics of confined ILs as well as aid optimizing the performance of devices with ILs.
Collapse
Affiliation(s)
- Hao-Qian Liu
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China.
| | - Yong-Lei Wang
- National Supercomputer Centre (NSC), Linköping University, SE-581 83 Linköping, Sweden
| | - Bin Li
- School of Chemical Engineering and Technology, Sun Yat-Sen University, Zhuhai 519082, China.
| |
Collapse
|
3
|
Pan X, Kochovski Z, Wang YL, Sarhan RM, Härk E, Gupta S, Stojkovikj S, El-Nagar GA, Mayer MT, Schürmann R, Deumer J, Gollwitzer C, Yuan J, Lu Y. Poly(ionic liquid) nanovesicles via polymerization induced self-assembly and their stabilization of Cu nanoparticles for tailored CO 2 electroreduction. J Colloid Interface Sci 2023; 637:408-420. [PMID: 36716665 DOI: 10.1016/j.jcis.2023.01.097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 01/22/2023]
Abstract
Herein, we report a straightforward, scalable synthetic route towards poly(ionic liquid) (PIL) homopolymer nanovesicles (NVs) with a tunable particle size of 50 to 120 nm and a shell thickness of 15 to 60 nm via one-step free radical polymerization induced self-assembly. By increasing monomer concentration for polymerization, their nanoscopic morphology can evolve from hollow NVs to dense spheres, and finally to directional worms, in which a multilamellar packing of PIL chains occurred in all samples. The transformation mechanism of NVs' internal morphology is studied in detail by coarse-grained simulations, revealing a correlation between the PIL chain length and the shell thickness of NVs. To explore their potential applications, PIL NVs with varied shell thickness are in situ functionalized with ultra-small (1 ∼ 3 nm in size) copper nanoparticles (CuNPs) and employed as electrocatalysts for CO2 electroreduction. The composite electrocatalysts exhibit a 2.5-fold enhancement in selectivity towards C1 products (e.g., CH4), compared to the pristine CuNPs. This enhancement is attributed to the strong electronic interactions between the CuNPs and the surface functionalities of PIL NVs. This study casts new aspects on using nanostructured PILs as new electrocatalyst supports in CO2 conversion to C1 products.
Collapse
Affiliation(s)
- Xuefeng Pan
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany; Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | - Zdravko Kochovski
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Yong-Lei Wang
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Radwan M Sarhan
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany; Chemistry Department, Faculty of Science, Cairo University, Egypt
| | - Eneli Härk
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Siddharth Gupta
- Helmholtz Young Investigator Group: Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany; Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany
| | - Sasho Stojkovikj
- Helmholtz Young Investigator Group: Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany; Institut für Chemie und Biochemie, Freie Universität Berlin, Arnimallee 22, D-14195 Berlin, Germany
| | - Gumaa A El-Nagar
- Helmholtz Young Investigator Group: Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany; Chemistry Department, Faculty of Science, Cairo University, Egypt.
| | - Matthew T Mayer
- Helmholtz Young Investigator Group: Electrochemical Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
| | - Robin Schürmann
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Jérôme Deumer
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Christian Gollwitzer
- Physikalisch-Technische Bundesanstalt (PTB), Abbestr. 2-12, 10587 Berlin, Germany
| | - Jiayin Yuan
- Department of Materials and Environmental Chemistry (MMK), Stockholm University, Svante Arrhenius väg 16C, 10691 Stockholm, Sweden.
| | - Yan Lu
- Department for Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, Hahn-Meitner-Platz 1, 14109 Berlin, Germany; Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany.
| |
Collapse
|
4
|
Mazzilli V, Satoh K, Saielli G. Phase behaviour of mixtures of charged soft disks and spheres. SOFT MATTER 2023; 19:3311-3324. [PMID: 37093590 DOI: 10.1039/d3sm00223c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
We have investigated the phase behaviour of mixtures of soft disks (Gay-Berne oblate ellipsoids, GB) and soft spheres (Lennard-Jones, LJ) with opposite charge as a model of ionic liquid crystals and colloidal suspensions. We have used constant volume Molecular Dynamics simulations and fixed the stoichiometry of the mixture in order to have electroneutrality; three systems have been selected GB : LJ = 1 : 2, GB : LJ = 1 : 1 and GB : LJ = 2 : 1. For each system we have selected three values of the scaled point charge q* of the GB particles, namely 0.5, 1.0 and 2.0 (and a corresponding negative scaled charge of the LJ particles that depends on the stoichiometric ratio). We have found a very rich mesomorphism with the formation, as a function of the scaled temperature, of the isotropic phase, the discotic nematic phase, the hexagonal columnar phase and crystal phases. While the structure of the high temperature phases was similar in all systems, the hexagonal columnar phases exhibited a highly variable morphology depending on the scaled charge and stoichiometry. On the one hand, GB : LJ = 1 : 2 systems form lamellar structures, akin to smectic phases, with an alternation of layers of disks (exhibiting an hexagonal columnar phase) and layers of LJ particles (in the isotropic phase). On the other hand, for the 2 : 1 stoichiometry we observe the formation of a frustrated hexagonal columnar phase with an alternating tilt direction of the molecular axis. We rationalize these findings based on the structure of the neutral ion pair dominating the behaviour at low temperature and high charge.
Collapse
Affiliation(s)
- Valerio Mazzilli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
- CNR-ITM, Institute on Membrane Technology, Padova Unit, Via Marzolo, 1, 35131 Padova, Italy
| | - Katsuhiko Satoh
- Department of Chemistry, Osaka Sangyo University, Daito, Osaka, 574-8530, Japan.
| | - Giacomo Saielli
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
- CNR-ITM, Institute on Membrane Technology, Padova Unit, Via Marzolo, 1, 35131 Padova, Italy
| |
Collapse
|
5
|
Bodo E. Perspectives in the Computational Modeling of New Generation, Biocompatible Ionic Liquids. J Phys Chem B 2022; 126:3-13. [PMID: 34978449 PMCID: PMC8762658 DOI: 10.1021/acs.jpcb.1c09476] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 12/15/2021] [Indexed: 12/11/2022]
Abstract
In this Perspective, I review the current state of computational simulations on ionic liquids with an emphasis on the recent biocompatible variants. These materials are used here as an example of relatively complex systems that highlights the limits of some of the approaches commonly used to study their structure and dynamics. The source of these limits consists of the coexistence of nontrivial electrostatic, many-body quantum effects, strong hydrogen bonds, and chemical processes affecting the mutual protonation state of the constituent molecular ions. I also provide examples on how it is possible to overcome these problems using suitable simulation paradigms and recently improved techniques that, I expect, will be gradually introduced in the state-of-the-art of computational simulations of ionic liquids.
Collapse
Affiliation(s)
- Enrico Bodo
- Chemistry Department, University of Rome “La Sapienza”, P. A. Moro 5, 00185 Rome, Italy
| |
Collapse
|