1
|
Novelli F, Friebel P, Murillo-Sanchez ML, Michael Klopf J, Cattaneo L. Liquid crystal wave plate operating close to 18 THz. OPTICS LETTERS 2024; 49:2061-2064. [PMID: 38621076 DOI: 10.1364/ol.519177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/09/2024] [Indexed: 04/17/2024]
Abstract
Controlling the properties of mid- and far-infrared radiation can provide a means to transiently alter the properties of materials for novel applications. However, a limited number of optical elements are available to control its polarization state. Here we show that a 15-µm thick liquid crystal cell containing 8CB (4-octyl-4'-cyanobiphenyl) in the ordered, smectic A phase can be used as a phase retarder or wave plate. This was tested using the bright, short-pulsed (∼1 ps) radiation centered at 16.5 µm (18.15 THz) that is emitted by a free electron laser at high repetition rate (13 MHz). These results demonstrate a possible tool for the exploration of the mid- and far-infrared range and could be used to develop novel metamaterials or extend multidimensional spectroscopy to this portion of the electromagnetic spectrum.
Collapse
|
2
|
Novelli F. Terahertz spectroscopy of thick and diluted water solutions. OPTICS EXPRESS 2024; 32:11041-11056. [PMID: 38570962 DOI: 10.1364/oe.510393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/16/2024] [Indexed: 04/05/2024]
Abstract
While bright terahertz sources are used to perform nonlinear experiments, they can be advantageous for high-precision linear measurements of opaque samples. By placing the sample away from the focus, nonlinearities can be suppressed, and sizeable amounts of transmitted radiation detected. Here, this approach is demonstrated for a 0.5 mm thick layer of liquid water in a static sample holder. Variations of the index of refraction as small as (7 ± 2) · 10-4 were detected at 0.58 THz for an aqueous salt solution containing ten millimoles of sodium chloride. To my knowledge, this precision is unprecedented in time-domain spectroscopy studies of diluted aqueous systems or other optically thick and opaque materials.
Collapse
|
3
|
Mendis BL, He Z, Li X, Wang J, Li C, Li P. Acoustic Atomization-Induced Pumping Based on a Vibrating Sharp-Tip Capillary. MICROMACHINES 2023; 14:1212. [PMID: 37374797 DOI: 10.3390/mi14061212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/05/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023]
Abstract
Pumping is an essential component in many microfluidic applications. Developing simple, small-footprint, and flexible pumping methods is of great importance to achieve truly lab-on-a-chip systems. Here, we report a novel acoustic pump based on the atomization effect induced by a vibrating sharp-tip capillary. As the liquid is atomized by the vibrating capillary, negative pressure is generated to drive the movement of fluid without the need to fabricate special microstructures or use special channel materials. We studied the influence of the frequency, input power, internal diameter (ID) of the capillary tip, and liquid viscosity on the pumping flow rate. By adjusting the ID of the capillary from 30 µm to 80 µm and the power input from 1 Vpp to 5 Vpp, a flow rate range of 3 to 520 µL/min can be achieved. We also demonstrated the simultaneous operation of two pumps to generate parallel flow with a tunable flow rate ratio. Finally, the capability of performing complex pumping sequences was demonstrated by performing a bead-based ELISA in a 3D-printed microdevice.
Collapse
Affiliation(s)
| | - Ziyi He
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiaojun Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Jing Wang
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Chong Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| | - Peng Li
- C. Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, WV 26506, USA
| |
Collapse
|
4
|
Han B, Isborn CM, Shi L. Incorporating Polarization and Charge Transfer into a Point-Charge Model for Water Using Machine Learning. J Phys Chem Lett 2023; 14:3869-3877. [PMID: 37067482 DOI: 10.1021/acs.jpclett.3c00036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Rigid nonpolarizable water models with fixed point charges have been widely employed in molecular dynamics simulations due to their efficiency and reasonable accuracy for the potential energy surface. However, the dipole moment surface of water is not necessarily well-described by the same fixed charges, leading to failure in reproducing dipole-related properties. Here, we developed a machine-learning model trained against electronic structure data to assign point charges for water, and the resulting dipole moment surface significantly improved the predictions of the dielectric constant and the low-frequency IR spectrum of liquid water. Our analysis reveals that within our atom-centered point-charge description of the dipole moment surface, the intermolecular charge transfer is the major source of the peak intensity at 200 cm-1, whereas the intramolecular polarization controls the enhancement of the dielectric constant. The effects of exact Hartree-Fock exchange in the hybrid density functional on these properties are also discussed.
Collapse
Affiliation(s)
- Bowen Han
- Chemistry and Biochemistry, University of California, Merced, California 95343, United States
| | - Christine M Isborn
- Chemistry and Biochemistry, University of California, Merced, California 95343, United States
| | - Liang Shi
- Chemistry and Biochemistry, University of California, Merced, California 95343, United States
| |
Collapse
|
5
|
Nabilkova A, Ismagilov A, Melnik M, Tsypkin A, Guselnikov M, Kozlov S, Zhang XC. Controlling water giant low-inertia nonlinear refractive index in the THz frequency range via temperature variation. OPTICS LETTERS 2023; 48:1312-1314. [PMID: 36857276 DOI: 10.1364/ol.484657] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
To create self-controlled radiation photonics systems, it is necessary to have complete information about the nonlinear properties of the materials used. In this Letter, the vibrational mechanism of the giant low-inertia cubic nonlinearity of the refractive index of water in the terahertz (THz) frequency range is experimentally proven. Its dominance, which manifests itself when the temperature of the liquid changes, is demonstrated. The measured nonlinear refractive index in the THz frequency range for a water jet at temperatures from 14°C to 21°C demonstrates a correlation with the theoretical approach, varies in the range 4-10 × 10-10 cm2/W, and is characterized by an inertial time constant of less than 1 ps.
Collapse
|
6
|
Millon C, Houver S, Saraceno CJ. 400 kHz repetition rate THz-TDS with 24 mW of average power driven by a compact industrial Yb-laser. OPTICS EXPRESS 2023; 31:7922-7932. [PMID: 36859913 DOI: 10.1364/oe.476261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/02/2022] [Indexed: 06/18/2023]
Abstract
We demonstrate a high average power terahertz time-domain spectroscopy (THZ-TDS) set-up based on optical rectification in the tilted-pulse front geometry in lithium niobate at room temperature, driven by a commercial, industrial femtosecond-laser operating with flexible repetition rate between 40 kHz - 400 kHz. The driving laser provides a pulse energy of 41 µJ for all repetition rates, at a pulse duration of 310 fs, allowing us to explore repetition rate dependent effects in our TDS. At the maximum repetition rate of 400 kHz, up to 16.5 W of average power are available to drive our THz source, resulting in a maximum of 24 mW of THz average power with a conversion efficiency of ∼ 0.15% and electric field strength of several tens of kV/cm. At the other available lower repetition rates, we show that the pulse strength and bandwidth of our TDS is unchanged, showing that the THz generation is not affected by thermal effects in this average power region of several tens of watts. The resulting combination of high electric field strength with flexible and high repetition rate is very attractive for spectroscopy, in particular since the system is driven by an industrial and compact laser without the need for external compressors or other specialized pulse manipulation.
Collapse
|
7
|
Abstract
The photo-induced radiolysis of water is an elementary reaction in biology and chemistry, forming solvated electrons, OH radicals, and hydronium cations on fast time scales. Here, we use an optical-pump terahertz-probe spectroscopy setup to trigger the photoionization of water molecules with optical laser pulses at ~400 nm and then time-resolve the transient solvent response with broadband terahertz (THz) fields with a ~90 fs time resolution. We observe three distinct spectral responses. The first is a positive broadband mode that can be attributed to an initial diffuse, delocalized electron with a radius of (22 ± 1) Å, which is short lived (<200 fs) because the absorption is blue-shifting outside of the THz range. The second emerging spectroscopic signature with a lifetime of about 150 ps is attributed to an intermolecular mode associated with a mass rearrangement of solvent molecules due to charge separation of radicals and hydronium cations. After 0.2 ps, we observe a long-lasting THz signature with depleted intensity at 110 cm-1 that is well reproduced by ab initio molecular dynamics. We interpret this negative band at 110 cm-1 as the solvent cage characterized by a weakening of the hydrogen bond network in the first and second hydration shells of the cavity occupied by the localized electron.
Collapse
|
8
|
Ng RC, El Sachat A, Cespedes F, Poblet M, Madiot G, Jaramillo-Fernandez J, Florez O, Xiao P, Sledzinska M, Sotomayor-Torres CM, Chavez-Angel E. Excitation and detection of acoustic phonons in nanoscale systems. NANOSCALE 2022; 14:13428-13451. [PMID: 36082529 PMCID: PMC9520674 DOI: 10.1039/d2nr04100f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Phonons play a key role in the physical properties of materials, and have long been a topic of study in physics. While the effects of phonons had historically been considered to be a hindrance, modern research has shown that phonons can be exploited due to their ability to couple to other excitations and consequently affect the thermal, dielectric, and electronic properties of solid state systems, greatly motivating the engineering of phononic structures. Advances in nanofabrication have allowed for structuring and phonon confinement even down to the nanoscale, drastically changing material properties. Despite developments in fabricating such nanoscale devices, the proper manipulation and characterization of phonons continues to be challenging. However, a fundamental understanding of these processes could enable the realization of key applications in diverse fields such as topological phononics, information technologies, sensing, and quantum electrodynamics, especially when integrated with existing electronic and photonic devices. Here, we highlight seven of the available methods for the excitation and detection of acoustic phonons and vibrations in solid materials, as well as advantages, disadvantages, and additional considerations related to their application. We then provide perspectives towards open challenges in nanophononics and how the additional understanding granted by these techniques could serve to enable the next generation of phononic technological applications.
Collapse
Affiliation(s)
- Ryan C Ng
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | | | - Francisco Cespedes
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
- Departamento de Física, Universidad Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Martin Poblet
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Guilhem Madiot
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Juliana Jaramillo-Fernandez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Omar Florez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
- Departamento de Física, Universidad Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Peng Xiao
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
- Departamento de Física, Universidad Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Marianna Sledzinska
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Clivia M Sotomayor-Torres
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
- ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| | - Emigdio Chavez-Angel
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
9
|
van der Meer AFG. Comment on "Terahertz pump-probe of liquid water at 12.3 THz" by F. Novelli, C. Hoberg, E. M. Adams, J. M. Klopf and M. Havenith, Phys. Chem. Chem. Phys., 2022, 24, 653-665. Phys Chem Chem Phys 2022; 24:13411-13412. [PMID: 35594060 DOI: 10.1039/d1cp05216k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The interpretation of the data presented by Novelli at al. as the nonlinear response of water is questioned.
Collapse
|
10
|
Novelli F, Hoberg C, Adams EM, Klopf JM, Havenith M. Reply to the 'Comment on "Terahertz pump-probe of liquid water at 12.3 THz"' by A. F. G. van der Meer, PCCP, 2022, 24, D1CP05216K. Phys Chem Chem Phys 2022; 24:13413-13415. [PMID: 35594164 DOI: 10.1039/d2cp00565d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
As outlined in our paper, we developed a model which is able to explain all recorded THz pump-probe data at 12.3 THz in the static water cell as well as in the liquid jet. The model includes an instantaneous temperature-dependent response by an acoustic phonon, an inherent non-linear response of water, and a slower thermal response. The order of magnitude of the non-linear contributions agrees with previous experimental results by us2 and other groups (see ref. 32, 33 and 35 in ref. 1) as well as with simulations2, which predict an enhanced non-linear response of water in the frequency range of the libration.
Collapse
Affiliation(s)
- Fabio Novelli
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany.
| | - Claudius Hoberg
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany.
| | - Ellen M Adams
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany.
| | - J Michael Klopf
- Institute of Radiation Physics, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Martina Havenith
- Department of Physical Chemistry II, Ruhr University Bochum, 44780 Bochum, Germany.
| |
Collapse
|