1
|
Cheong O, Bornhake T, Zhu X, Eikerling MH. Stay Hydrated! Impact of Solvation Phenomena on the CO 2 Reduction Reaction at Pb(100) and Ag(100) surfaces. CHEMSUSCHEM 2023; 16:e202300885. [PMID: 37539768 DOI: 10.1002/cssc.202300885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/05/2023]
Abstract
Herein, a comprehensive computational study of the impact of solvation on the reduction reaction of CO2 to formic acid (HCOOH) and carbon monoxide on Pb(100) and Ag(100) surfaces is presented. Results further the understanding of how solvation phenomena influence the adsorption energies of reaction intermediates. We applied an explicit solvation scheme harnessing a combined density functional theory (DFT)/microkinetic modeling approach for the CO2 reduction reaction. This approach reveals high selectivities for CO formation at Ag and HCOOH formation on Pb, resolving the prior disparity between ab initio calculations and experimental observations. Furthermore, the detailed analysis of adsorption energies of relevant reaction intermediates shows that the total number of hydrogen bonds formed by HCOO plays a primary role for the adsorption strength of intermediates and the electrocatalytic activity. Results emphasize the importance of explicit solvation for adsorption and electrochemical reaction phenomena on metal surfaces.
Collapse
Affiliation(s)
- Oskar Cheong
- Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Enginering, RWTH Aachen University, Intzestrasse 5, 52072, Aachen, Germany
- JARA Energy & Center for Simulation and Data Science (CSD), 52425, Jülich, Germany
| | - Thomas Bornhake
- Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- JARA Energy & Center for Simulation and Data Science (CSD), 52425, Jülich, Germany
| | - Xinwei Zhu
- Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Enginering, RWTH Aachen University, Intzestrasse 5, 52072, Aachen, Germany
- JARA Energy & Center for Simulation and Data Science (CSD), 52425, Jülich, Germany
| | - Michael H Eikerling
- Institute of Energy and Climate Research (IEK-13), Forschungszentrum Jülich, Wilhelm-Johnen-Straße, 52425, Jülich, Germany
- Chair of Theory and Computation of Energy Materials, Faculty of Georesources and Materials Enginering, RWTH Aachen University, Intzestrasse 5, 52072, Aachen, Germany
- JARA Energy & Center for Simulation and Data Science (CSD), 52425, Jülich, Germany
| |
Collapse
|
2
|
Huang J, Zhang Y, Li M, Groß A, Sakong S. Comparing Ab Initio Molecular Dynamics and a Semiclassical Grand Canonical Scheme for the Electric Double Layer of the Pt(111)/Water Interface. J Phys Chem Lett 2023; 14:2354-2363. [PMID: 36848227 DOI: 10.1021/acs.jpclett.2c03892] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The theoretical modeling of metal/water interfaces centers on an appropriate configuration of the electric double layer (EDL) under grand canonical conditions. In principle, ab initio molecular dynamics (AIMD) simulations would be the appropriate choice for treating the competing water-water and water-metal interactions and explicitly considering the atomic and electronic degrees of freedom. However, this approach only allows simulations of relatively small canonical ensembles over a limited period (shorter than 100 ps). On the other hand, computationally efficient semiclassical approaches can treat the EDL model based on a grand canonical scheme by averaging the microscopic details. Thus, an improved description of the EDL can be obtained by combining AIMD simulations and semiclassical methods based on a grand canonical scheme. By taking the Pt(111)/water interface as an example, we compare these approaches in terms of the electric field, water configuration, and double-layer capacitance. Furthermore, we discuss how the combined merits of the approaches can contribute to advances in EDL theory.
Collapse
Affiliation(s)
- Jun Huang
- Institute of Theoretical Chemistry, Ulm University, 89081 Ulm, Germany
- IEK-13, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Yufan Zhang
- IEK-13, Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Mengru Li
- Institute of Theoretical Chemistry, Ulm University, 89081 Ulm, Germany
| | - Axel Groß
- Institute of Theoretical Chemistry, Ulm University, 89081 Ulm, Germany
- Electrochemical Energy Storage, Helmholtz Institute Ulm (HIU), 89069 Ulm, Germany
| | - Sung Sakong
- Institute of Theoretical Chemistry, Ulm University, 89081 Ulm, Germany
| |
Collapse
|