1
|
Tanis I, Brown D, Neyertz S, Vaidya M, Ballaguet JP, Duval S, Bahamdan A. A Molecular Dynamics Study of Single-Gas and Mixed-Gas N 2 and CH 4 Transport in Triptycene-Based Polyimide Membranes. Polymers (Basel) 2023; 15:3811. [PMID: 37765665 PMCID: PMC10535442 DOI: 10.3390/polym15183811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Fluorinated polyimides incorporated with triptycene units have gained growing attention over the last decade since they present potentially interesting selectivities and a higher free volume with respect to their triptycene-free counterparts. This work examines the transport of single-gas and mixed-gas N2 and CH4 in the triptycene-based 6FDA-BAPT homopolyimide and in a block 15,000 g mol-1/15,000 g mol-1 6FDA-mPDA/BAPT copolyimide by using molecular dynamics (MD) simulations. The void-space analyses reveal that, while the free volume consists of small-to-medium holes in the 6FDA-BAPT homopolyimide, there are more medium-to-large holes in the 6FDA-mPDA/BAPT copolyimide. The single-gas sorption isotherms for N2 and CH4 over the 0-70 bar range at 338.5 K show that both gases are more soluble in the block copolyimide, with a higher affinity for methane. CH4 favours sites with the most favourable energetic interactions, while N2 probes more sites in the matrices. The volume swellings remain limited since neither N2 nor CH4 plasticise penetrants. The transport of a binary-gas 2:1 CH4/N2 mixture is also examined in both polyimides under operating conditions similar to those used in current natural gas processing, i.e., at 65.5 bar and 338.5 K. In the mixed-gas simulations, the solubility selectivities in favour of CH4 are enhanced similarly in both matrices. Although diffusion is higher in 6FDA-BAPT/6FDA-mPDA, the diffusion selectivities are also close. Both triptycene-based polyimides under study favour, to a similar extent, the transport of methane over that of nitrogen under the conditions studied.
Collapse
Affiliation(s)
- Ioannis Tanis
- Univ. Savoie Mont Blanc, Univ. Grenoble Alpes, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France; (D.B.); (S.N.)
| | - David Brown
- Univ. Savoie Mont Blanc, Univ. Grenoble Alpes, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France; (D.B.); (S.N.)
| | - Sylvie Neyertz
- Univ. Savoie Mont Blanc, Univ. Grenoble Alpes, CNRS, Grenoble INP, LEPMI, 38000 Grenoble, France; (D.B.); (S.N.)
| | - Milind Vaidya
- Saudi Aramco, Research & Development Center, P.O. Box 62, Dhahran 31311, Saudi Arabia; (M.V.); (J.-P.B.); (S.D.); (A.B.)
| | - Jean-Pierre Ballaguet
- Saudi Aramco, Research & Development Center, P.O. Box 62, Dhahran 31311, Saudi Arabia; (M.V.); (J.-P.B.); (S.D.); (A.B.)
| | - Sebastien Duval
- Saudi Aramco, Research & Development Center, P.O. Box 62, Dhahran 31311, Saudi Arabia; (M.V.); (J.-P.B.); (S.D.); (A.B.)
| | - Ahmad Bahamdan
- Saudi Aramco, Research & Development Center, P.O. Box 62, Dhahran 31311, Saudi Arabia; (M.V.); (J.-P.B.); (S.D.); (A.B.)
| |
Collapse
|
2
|
Balcik M, Wang Y, Pinnau I. Exploring the effect of intra-chain rigidity on mixed-gas separation performance of a Triptycene-Tröger's base ladder polymer (PIM-Trip-TB) by atomistic simulations. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
3
|
Ricci E, Minelli M, De Angelis MG. Modelling Sorption and Transport of Gases in Polymeric Membranes across Different Scales: A Review. MEMBRANES 2022; 12:857. [PMID: 36135877 PMCID: PMC9502097 DOI: 10.3390/membranes12090857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 06/02/2023]
Abstract
Professor Giulio C. Sarti has provided outstanding contributions to the modelling of fluid sorption and transport in polymeric materials, with a special eye on industrial applications such as membrane separation, due to his Chemical Engineering background. He was the co-creator of innovative theories such as the Non-Equilibrium Theory for Glassy Polymers (NET-GP), a flexible tool to estimate the solubility of pure and mixed fluids in a wide range of polymers, and of the Standard Transport Model (STM) for estimating membrane permeability and selectivity. In this review, inspired by his rigorous and original approach to representing membrane fundamentals, we provide an overview of the most significant and up-to-date modeling tools available to estimate the main properties governing polymeric membranes in fluid separation, namely solubility and diffusivity. The paper is not meant to be comprehensive, but it focuses on those contributions that are most relevant or that show the potential to be relevant in the future. We do not restrict our view to the field of macroscopic modelling, which was the main playground of professor Sarti, but also devote our attention to Molecular and Multiscale Hierarchical Modeling. This work proposes a critical evaluation of the different approaches considered, along with their limitations and potentiality.
Collapse
Affiliation(s)
- Eleonora Ricci
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
| | - Matteo Minelli
- Department of Civil, Chemical, Environmental and Materials Engineering (DICAM), Alma Mater Studiorum—University of Bologna, 40126 Bologna, Italy
| | - Maria Grazia De Angelis
- Institute for Materials and Processes, School of Engineering, University of Edinburgh, Edinburgh EH9 3FB, UK
| |
Collapse
|