1
|
Mazumder A, Panthakkal Das P, Vinod K, Maret PD, Lijina MP, Engels B, Hariharan M. Core-Twist Modulated Intersystem Crossing in a π-Fused Single-Molecule. J Phys Chem Lett 2025; 16:4643-4651. [PMID: 40314438 DOI: 10.1021/acs.jpclett.5c01002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Herein, we present direct evidence of intersystem crossing (ISC) in a core-twisted naphthalenemonoimide-fused perylenediimide (NP) at the single-molecule level. The ISC process was characterized by frequent quantum jumps (short off states) in the single-molecule fluorescence measurements. The singlet to triplet quantum jumps in NP was corroborated by ultrafast transient absorption measurements. NP exhibits intersystem crossing with a rate constant kISC = 6.5 × 107 s-1 and a triplet quantum yield ϕT = 25.8 ± 2.4%. Our theoretical investigations unveil the potential crossing and state mixing between first singlet excited state S1 and third triplet excited state T3, thus providing insight into the ISC mechanism during the relaxation of NP from the Franck-Condon region to its optimal geometry in the S1 state. The current investigation provides critical insights into the twist-induced ISC process in a polyaromatic hydrocarbon at both the single-molecule and ensemble levels.
Collapse
Affiliation(s)
- Aniruddha Mazumder
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Pallavi Panthakkal Das
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Kavya Vinod
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Philip Daniel Maret
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| | - M P Lijina
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Maruthamala P.O., Vithura, Thiruvananthapuram, Kerala, India 695551
| |
Collapse
|
2
|
Swain A, Radacki K, Braunschweig H, Ravat P. Helically twisted nanoribbons via stereospecific annulative π-extension reaction employing [7]helicene as a molecular wrench. Chem Sci 2024; 15:11737-11747. [PMID: 39092091 PMCID: PMC11290328 DOI: 10.1039/d4sc01814a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/15/2024] [Indexed: 08/04/2024] Open
Abstract
Over the past decade, significant progress has been made in synthesizing atomically precise carbon nanostructures, particularly graphene nanoribbons (NRs), employing advanced synthetic methodologies. Despite these advancements, achieving control over the stereochemistry of twisted NRs has proven to be a formidable challenge. This manuscript presents a strategic approach to achieve absolute control over the single-handed helical conformation in a cove-edged NR. This strategy leverages enantiopure helicenes as a molecular wrench, intricately influencing the overall conformation of the NR. [7]helicenes stitched to the terminal K-regions of a conjugated pyrene NR through a stereospecific annulative π-extension reaction to produce a helically twisted NR with an end-to-end twist of 171°. Furthermore, a detailed investigation of the impact of twisting on the conformational population was studied by quantum chemical calculations.
Collapse
Affiliation(s)
- Asim Swain
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie Am Hubland 97074 Würzburg Germany
| | - Krzysztof Radacki
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie Am Hubland 97074 Würzburg Germany
| | - Holger Braunschweig
- Julius-Maximilians-Universität Würzburg, Institut für Anorganische Chemie Am Hubland 97074 Würzburg Germany
| | - Prince Ravat
- Julius-Maximilians-Universität Würzburg, Institut für Organische Chemie Am Hubland 97074 Würzburg Germany
| |
Collapse
|
3
|
Xie H, Xiao Z, Song Y, Jin K, Liu H, Zhou E, Cao J, Chen J, Ding J, Yi C, Shen X, Zuo C, Ding L. Tethered Helical Ladder-Type Aromatic Lactams. J Am Chem Soc 2024; 146:11978-11990. [PMID: 38626322 DOI: 10.1021/jacs.4c01347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Tethered nonplanar aromatics (TNAs) make up an important class of nonplanar aromatic compounds showing unique features. However, the knowledge on the synthesis, structures, and properties of TNAs remains insufficient. In this work, a new type of TNAs, the tethered aromatic lactams, is synthesized via Pd-catalyzed consecutive intramolecular direct arylations. These molecules possess a helical ladder-type conjugated system of up to 13 fused rings. The overall yields ranged from 3.4 to 4.3%. The largest of the tethered aromatic lactams, 6L-Bu-C14, demonstrates a guest-adaptive hosting capability of TNAs for the first time. When binding fullerene guests, the cavity of 6L-Bu-C14 became more circular to better accommodate spherical fullerene molecules. The host-guest interaction is thoroughly studied by X-ray crystallography, theoretical calculations, fluorescence titration, and nuclear magnetic resonance (NMR) titration experiments. 6L-Bu-C14 shows stronger binding with C70 than with C60 due to the better convex-concave π-π interaction. P and M enantiomers of all tethered aromatic lactams show distinct and persistent chiroptical properties and demonstrate the potential of chiral TNAs as circularly polarized luminescence (CPL) emitters.
Collapse
Affiliation(s)
- Huidong Xie
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuo Xiao
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yixiao Song
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ke Jin
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongxing Liu
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
| | - Erjun Zhou
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Cao
- College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jiangzhao Chen
- Faculty of Material Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
| | - Junqiao Ding
- School of Chemical Science and Technology, Yunnan University, Kunming 650091, China
| | - Chenyi Yi
- Department of Electrical Engineering, Tsinghua University, Beijing 100084, China
| | - Xingxing Shen
- College of Chemical Engineering, Hebei Normal University of Science and Technology, Qinhuangdao 066004, China
| | - Chuantian Zuo
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liming Ding
- Center for Excellence in Nanoscience, Key Laboratory of Nanosystem and Hierarchical Fabrication (CAS), National Center for Nanoscience and Technology, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Agrawal AR, Shiouki I, Deree Y, Bogoslavsky B, Gidron O. Controlling helicene's pitch by molecular tethering. Org Biomol Chem 2024; 22:1365-1368. [PMID: 38258458 DOI: 10.1039/d3ob02075d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
We applied post-cyclization annulation to introduce a series of tethered S-shaped double [4]helicenes in which the intramolecular tether imposes a specific helical handedness. Introducing a tether and then shortening the tether length incrementally increase the pitch angle of [4]helicene, thus enabling a quantitative study of the effects of helicene's pitch on its electronic and (chiro)optical properties.
Collapse
Affiliation(s)
- Abhijeet R Agrawal
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel.
| | - Israa Shiouki
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel.
| | - Yinon Deree
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel.
| | - Benny Bogoslavsky
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel.
| | - Ori Gidron
- Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Jerusalem, Israel.
| |
Collapse
|
5
|
Sunny J, Sebastian E, Sujilkumar S, Würthner F, Engels B, Hariharan M. Unveiling the intersystem crossing dynamics in N-annulated perylene bisimides. Phys Chem Chem Phys 2023; 25:28428-28436. [PMID: 37843851 DOI: 10.1039/d3cp03888b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
The efficient population of the triplet excited states in heavy metal-free organic chromophores has been one of the long-standing research problems to molecular photochemists. The negligible spin-orbit coupling matrix elements in the purely organic chromophores and the large singlet-triplet energy gap (ΔES-T) pose a hurdle for ultrafast intersystem crossing (ISC). Herein we report the unprecedented population of triplet manifold in a series of nitrogen-annulated perylene bisimide chromophores (NPBI and Br-NPBI). NPBI is found to have a moderate fluorescence quantum yield (Φf = 68 ± 5%), whereas Br-NPBI showcased a low fluorescence quantum yield (Φf = 2.0 ± 0.6%) in toluene. The femtosecond transient absorption measurements of Br-NPBI revealed ultrafast ISC (kISC = 1.97 × 1010 s-1) from the initially populated singlet excited state to the long-lived triplet excited states. The triplet quantum yields (ΦT = 95.2 ± 4.6% for Br-NPBI, ΦT = 18.7 ± 2.3% for NPBI) calculated from nanosecond transient absorption spectroscopy measurements showed the enhancement in triplet population upon bromine substitution. The quantum chemical calculations revealed the explicit role of nitrogen annulation in tuning the excited state energy levels to favor the ISC. The near degeneracy between the singlet and triplet excited states observed in NPBI and Br-NPBI (ΔES-T = -0.01 eV for NPBI, ΔES-T = 0.03 eV for Br-NPBI) facilitates the spin flipping in the molecules. Nitrogen annulation emerges as a design strategy to open up the ISC pathway and the rate of which can be further enhanced by the substitution of a heavier element.
Collapse
Affiliation(s)
- Jeswin Sunny
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Ebin Sebastian
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Suvarna Sujilkumar
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, Kerala, 695551, India.
| | - Frank Würthner
- Institut für Organische Chemie & Center for Nanosystems Chemistry, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Bernd Engels
- Institut für Physikalische und Theoretische Chemie, Universität Würzburg, Emil-Fischer-Strasse 42, 97074 Würzburg, Germany
| | - Mahesh Hariharan
- School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM), Vithura, Thiruvananthapuram, Kerala, 695551, India.
| |
Collapse
|
6
|
Bedi A, Schwartz G, Hananel U, Manor Armon A, Shioukhi I, Markovich G, Gidron O. The effect of axial and helical chirality on circularly polarized luminescence: lessons learned from tethered twistacenes. Chem Commun (Camb) 2023; 59:2011-2014. [PMID: 36723083 DOI: 10.1039/d2cc07074j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The effect of axial and helical twisting on the circularly polarized luminescence of acenes was studied both experimentally and computationally, using four series of tethered twisted acenes. We find that the combination of axial and helical chirality yields the highest anisotropy factors, and that the ratio between the absorption and emission anisotropy factors is an intrinsic property for twistacenes.
Collapse
Affiliation(s)
- Anjan Bedi
- Institute of Chemistry, Center for Nanoscience and Nanotechnology and the Cazalli Institute, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Gal Schwartz
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Uri Hananel
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Amit Manor Armon
- Institute of Chemistry, Center for Nanoscience and Nanotechnology and the Cazalli Institute, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Israa Shioukhi
- Institute of Chemistry, Center for Nanoscience and Nanotechnology and the Cazalli Institute, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| | - Gil Markovich
- School of Chemistry, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Ori Gidron
- Institute of Chemistry, Center for Nanoscience and Nanotechnology and the Cazalli Institute, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.
| |
Collapse
|
7
|
Čavlović D, Häussinger D, Blacque O, Ravat P, Juríček M. Nonacethrene Unchained: A Cascade to Chiral Contorted Conjugated Hydrocarbon with Two sp 3-Defects. JACS AU 2022; 2:1616-1626. [PMID: 35911448 PMCID: PMC9326821 DOI: 10.1021/jacsau.2c00190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
We demonstrate that structurally complex carbon nanostructures can be achieved via a synthetic approach that capitalizes on a π-radical reaction cascade. The cascade is triggered by oxidation of a dihydro precursor of helical diradicaloid nonacethrene to give a chiral contorted polycyclic aromatic hydrocarbon named hypercethrene. In this ten-electron oxidation process, four σ-bonds, one π-bond, and three six-membered rings are formed in a sequence of up to nine steps to yield a 72-carbon-atom warped framework, comprising two configurationally locked [7]helicene units, a fluorescent peropyrene unit, and two precisely installed sp3-defects. The key intermediate in this cascade is a closed nonacethrene derivative with one quaternary sp3-center, presumably formed via an electrocyclic ring closure of nonacethrene, which, when activated by oxidation, undergoes a reaction cascade analogous to the oxidative dimerization of phenalenyl to peropyrene. By controlling the amount of oxidant used, two intermediates and one side product could be isolated and fully characterized, including single-crystal X-ray diffraction analysis, and two intermediates were detected by electron paramagnetic resonance spectroscopy. In concert with density functional theory calculations, these intermediates support the proposed reaction mechanism. Compared to peropyrene, the absorption and emission of hypercethrene are slightly red-shifted on account of extended π-conjugation and the fluorescence quantum yield of 0.45 is decreased by a factor of ∼2. Enantiomerically enriched hypercethrene displays circularly polarized luminescence with a brightness value of 8.3 M-1 cm-1. Our results show that reactions of graphene-based π-radicals-typically considered an "undefined decomposition" of non-zero-spin materials-can be well-defined and selective, and have potential to be transformed into a step-economic synthetic method toward complex carbon nanostructures.
Collapse
Affiliation(s)
- Daniel Čavlović
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Daniel Häussinger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Olivier Blacque
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Prince Ravat
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
- Institute
of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Michal Juríček
- Department
of Chemistry, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
8
|
Mahlmeister B, Mahl M, Reichelt H, Shoyama K, Stolte M, Würthner F. Helically Twisted Nanoribbons Based on Emissive Near-Infrared Responsive Quaterrylene Bisimides. J Am Chem Soc 2022; 144:10507-10514. [PMID: 35649272 DOI: 10.1021/jacs.2c02947] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Graphene nanoribbons (GNRs) have the potential for next-generation functional devices. So far, GNRs with defined stereochemistry are rarely reported in literature and their optical response is usually bound to the ultraviolet or visible spectral region, while covering the near-infrared (NIR) regime is still challenging. Herein, we report two novel quaterrylene bisimides with either one- or twofold-twisted π-backbones enabled by the steric congestion of a fourfold bay arylation leading to an end-to-end twist of up to 76°. The strong interlocking effect of the π-stacked aryl substituents introduces a rigidification of the chromophore unambiguously proven by single-crystal X-ray analysis. This leads to unexpectedly strong NIR emissions at 862 and 903 nm with quantum yields of 1.5 and 0.9%, respectively, further ensuring high solubility as well as resolvable and highly stable atropo-enantiomers. Circular dichroism spectroscopy of these enantiopure chiral compounds reveals a strong Cotton effect Δε of up to 67 M-1 cm-1 centered far in the NIR region at 849 nm.
Collapse
Affiliation(s)
- Bernhard Mahlmeister
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Würzburg 97074, Germany
| | - Magnus Mahl
- Institut für Organische Chemie, Universität Würzburg, Würzburg 97074, Germany
| | | | - Kazutaka Shoyama
- Institut für Organische Chemie, Universität Würzburg, Würzburg 97074, Germany
| | - Matthias Stolte
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Würzburg 97074, Germany.,Institut für Organische Chemie, Universität Würzburg, Würzburg 97074, Germany
| | - Frank Würthner
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Würzburg 97074, Germany.,Institut für Organische Chemie, Universität Würzburg, Würzburg 97074, Germany
| |
Collapse
|
9
|
Tsuchiya M, Inoue R, Tanaka K, Morisaki Y. Synthesis of Twisted Anthracenes: Induction of Twist Chirality by the Planar Chiral [2.2]Paracyclophane. Chem Asian J 2022; 17:e202200418. [PMID: 35603977 DOI: 10.1002/asia.202200418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/19/2022] [Indexed: 11/10/2022]
Abstract
Planar chiral [2.2]paracyclophane was employed as chiral scaffolds to twist an anthracene ring by tethering at its 1- and 8positions; thus, twist chirality was induced in the anthracene moiety. The chiroptical properties of the resulting molecule, including circular dichroism (CD) and circularly polarized luminescence (CPL), were found to be derived from the twist chirality. An analogous molecule bearing long alkyl chains was a viscous liquid, and its liquid film exhibited good CD and CPL profiles. The theoretical studies are carried out to determine the origin of these properties in the ground and excited states, which reproduced well the experimental results.
Collapse
Affiliation(s)
- Motoki Tsuchiya
- Kwansei Gakuin University - Kobe Sanda Campus: Kansei Gakuin Daigaku - Kobe Sanda Campus, School of Biological and Environmental Sciences, JAPAN
| | - Ryo Inoue
- Kwansei Gakuin University - Kobe Sanda Campus: Kansei Gakuin Daigaku - Kobe Sanda Campus, School of Biological and Environmental Sciences, JAPAN
| | - Kentaro Tanaka
- Kwansei Gakuin University - Kobe Sanda Campus: Kansei Gakuin Daigaku - Kobe Sanda Campus, School of Biological and Environmental Sciences, JAPAN
| | - Yasuhiro Morisaki
- Kwansei Gakuin University - Kobe Sanda Campus: Kansei Gakuin Daigaku - Kobe Sanda Campus, Department of Applied Chemistry for Environment, 1 Gakuen Uegahara, 669-1330, Sanda, JAPAN
| |
Collapse
|
10
|
Sadowski B, Mierzwa D, Kang S, Grzybowski M, Poronik YM, Sobolewski AL, Kim D, Gryko DT. Tuning the aromatic backbone twist in dipyrrolonaphthyridinediones. Chem Commun (Camb) 2022; 58:3697-3700. [PMID: 35225999 DOI: 10.1039/d1cc06863f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This communication describes the photophysical behavior of three analogs of cyclophane bearing the dipyrrolonaphthyridinedione (DPND) core. In these molecules, intersystem crossing (ISC) can be successfully induced by distinct changes in the deviation from planarity within the DPND core, allowing at the same time the emission maximum to shift from the green to red region of the visible spectrum without any synthetic modifications of the chromophore structure. This finding may build the foundation for a new paradigm for inducing ISC-type transitions within other centrosymmetric and planar cross-conjugated chromophores.
Collapse
Affiliation(s)
- Bartłomiej Sadowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Dominik Mierzwa
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Seongsoo Kang
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea.
| | - Marek Grzybowski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | - Yevgen M Poronik
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| | | | - Dongho Kim
- Department of Chemistry and Spectroscopy Laboratory for Functional π-Electronic Systems, Yonsei University, Seoul 03722, Korea.
| | - Daniel T Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, Warsaw 01-224, Poland.
| |
Collapse
|