1
|
Jiang T, Zhang J, Baumgarten MKA, Chen MF, Dinh HQ, Ganeshram A, Maskara N, Ni A, Lee J. Walking through Hilbert Space with Quantum Computers. Chem Rev 2025. [PMID: 40315368 DOI: 10.1021/acs.chemrev.4c00508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2025]
Abstract
Computations of chemical systems' equilibrium properties and nonequilibrium dynamics have been suspected of being a "killer app" for quantum computers. This review highlights the recent advancements of quantum algorithms tackling complex sampling tasks in the key areas of computational chemistry: ground state, thermal state properties, and quantum dynamics calculations. We review a broad range of quantum algorithms, from hybrid quantum-classical to fully quantum, focusing on the traditional Monte Carlo family, including Markov chain Monte Carlo, variational Monte Carlo, projector Monte Carlo, path integral Monte Carlo, etc. We also cover other relevant techniques involving complex sampling tasks, such as quantum-selected configuration interaction, minimally entangled typical thermal states, entanglement forging, and Monte Carlo-flavored Lindbladian dynamics. We provide a comprehensive overview of these algorithms' classical and quantum counterparts, detailing their theoretical frameworks and discussing the potentials and challenges in achieving quantum computational advantages.
Collapse
Affiliation(s)
- Tong Jiang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jinghong Zhang
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Moritz K A Baumgarten
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Meng-Fu Chen
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Hieu Q Dinh
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Aadithya Ganeshram
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Nishad Maskara
- Department of Physics, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Anton Ni
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Joonho Lee
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Google Research, Venice, California 90291, United States
| |
Collapse
|
2
|
Mondal D, Patra C, Halder D, Maitra R. Many-body approach to projective solution of generalized operators: Formulation and application to quantum computing. J Chem Phys 2025; 162:164105. [PMID: 40260806 DOI: 10.1063/5.0258899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/07/2025] [Indexed: 04/24/2025] Open
Abstract
In this paper, we propose a novel many-body approach for determining the amplitudes of generalized operators in a projection-based formalism. To implicitly account for the effects of higher-order excitations, we begin with the well-established double-exponential coupled-cluster (CC) ansatz, parametrized by both one- and two-body excitation operators, complemented by a set of vacuum-annihilating two-body generalized operators with effective excitation rank of one. A systematic formalism is developed that effectively bypasses the constraints due to the vacuum-annihilation property of the generalized operators toward a set of closed-form residual equations for their optimization. Such a strategy requires the removal of the underlying redundancy in high-rank excited determinants, generated due to the presence of the generalized operators in the ansatz, by projecting them onto an internally contracted lower-dimensional manifold. This many-body formalism is integrated with the near-term projective quantum eigensolver (PQE) framework that leverages the conventional CC-like residual minimization to iteratively decouple the excited manifold from the reference. With the application of several molecular systems within PQE architecture, we demonstrate that the developed methodology enables us to achieve similar accuracy to the disentangled unitary coupled cluster with singles, doubles, and triples ansatz while utilizing an order of magnitude fewer quantum resources. Furthermore, when simulated under stochastic Gaussian noise or depolarizing hardware noise, our method shows significantly improved noise resilience compared to the other members of PQE family and the state-of-the-art variational quantum eigensolver.
Collapse
Affiliation(s)
- Dibyendu Mondal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chayan Patra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Dipanjali Halder
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rahul Maitra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Centre of Excellence in Quantum Information, Computing, Science and Technology, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
3
|
Singh H, Majumder S, Mishra S. SHARC-VQE: Simplified Hamiltonian approach with refinement and correction enabled variational quantum eigensolver for molecular simulation. J Chem Phys 2025; 162:114117. [PMID: 40105132 DOI: 10.1063/5.0249447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 02/20/2025] [Indexed: 03/20/2025] Open
Abstract
Quantum computing is finding increasingly more applications in quantum chemistry, particularly to simulate electronic structure and molecular properties of simple systems. The transformation of a molecular Hamiltonian from the fermionic space to the qubit space results in a series of Pauli strings. Calculating the energy then involves evaluating the expectation values of each of these strings, which presents a significant bottleneck for applying variational quantum eigensolvers (VQEs) in quantum chemistry. Unlike fermionic Hamiltonians, the terms in a qubit Hamiltonian are additive. This work leverages this property to introduce a novel method for extracting information from the partial qubit Hamiltonian, thereby enhancing the efficiency of VQEs. This work introduces the SHARC-VQE (Simplified Hamiltonian Approximation, Refinement, and Correction-VQE) method, where the full molecular Hamiltonian is partitioned into two parts based on the ease of quantum execution. The easy-to-execute part constitutes the partial Hamiltonian, and the remaining part, while more complex to execute, is generally less significant. The latter is approximated by a refined operator and added up as a correction into the partial Hamiltonian. SHARC-VQE significantly reduces computational costs for molecular simulations. The cost of a single energy measurement can be reduced from O(N4ϵ2) to O(1ϵ2) for a system of N qubits and accuracy ϵ, while the overall cost of VQE can be reduced from O(N7ϵ2) to O(N3ϵ2). Furthermore, measurement outcomes using SHARC-VQE are less prone to errors induced by noise from quantum circuits, reducing the errors from 20%-40% to 5%-10% without any additional error correction or mitigation technique. In addition, the SHARC-VQE is demonstrated as an initialization technique, where the simplified partial Hamiltonian is used to identify an optimal starting point for a complex problem. Overall, this method improves the efficiency of VQEs and enhances the accuracy and reliability of quantum simulations by mitigating noise and overcoming computational challenges.
Collapse
Affiliation(s)
- Harshdeep Singh
- Center of Computational and Data Sciences, Indian Institute of Technology, Kharagpur, India
| | - Sonjoy Majumder
- Department of Physics, Indian Institute of Technology, Kharagpur, India
| | - Sabyashachi Mishra
- Department of Chemistry, Indian Institute of Technology, Kharagpur, India
| |
Collapse
|
4
|
Sun S, Kumar C, Shen K, Shishenina E, Mendl CB. Evaluating Ground State Energies of Chemical Systems with Low-Depth Quantum Circuits and High Accuracy. J Phys Chem A 2025; 129:2379-2386. [PMID: 40029977 PMCID: PMC11912482 DOI: 10.1021/acs.jpca.4c07045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/31/2025] [Accepted: 02/13/2025] [Indexed: 03/14/2025]
Abstract
Quantum computers have the potential to efficiently solve the electronic structure problem but are currently limited by noise and shallow circuits. We present an enhanced Variational Quantum Eigensolver (VQE) ansatz based on the Qubit Coupled Cluster (QCC) approach that requires optimization of only n parameters, where n is the number of Pauli string generators, rather than the typical n + 2m parameters, where m is the number of qubits. We evaluate the ground state energies and molecular dissociation curves of strongly correlated molecules, namely O3 and Li4, using active spaces of varying sizes in conjunction with our enhanced QCC ansatz, Unitary Coupled Cluster Single-Double (UCCSD) ansatz, and the classical Coupled Cluster Singles and Doubles (CCSD) method. Compared to UCCSD, our approach significantly reduces the number of parameters while maintaining high accuracy. Numerical simulations demonstrate the effectiveness of our approach, and experiments on superconducting and trapped-ion quantum computers showcase its practicality on real hardware. By eliminating the need for symmetry-restoring gates and reducing the number of parameters, our enhanced QCC ansatz enables accurate quantum chemistry calculations on near-term quantum devices for strongly correlated systems.
Collapse
Affiliation(s)
- Shuo Sun
- School of Computation, Information and Technology, Technical University of Munich, Boltzmannstraße 3, Garching 85748, Germany
| | | | - Kevin Shen
- BMW Group Central Invention, Munich 80788, Germany
- applied Quantum algorithms (aQa), Leiden University, Leiden 2311 EZ, the Netherlands
| | | | - Christian B Mendl
- School of Computation, Information and Technology, Technical University of Munich, Boltzmannstraße 3, Garching 85748, Germany
- Technical University of Munich, Institute for Advanced Study, Lichtenbergstraße 2a, Garching 85748, Germany
- Munich Center for Quantum Science and Technology (MCQST), Schellingstraße 4, Munich 80799, Germany
| |
Collapse
|
5
|
Jensen RB, Christiansen O. Unitary vibrational coupled cluster: General theory and implementation. J Chem Phys 2025; 162:084112. [PMID: 40013890 DOI: 10.1063/5.0249469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 01/31/2025] [Indexed: 02/28/2025] Open
Abstract
Along with the surge in interest in quantum computing, interest in the unitary coupled cluster (UCC) Ansatz has reemerged. Although extensively studied within electronic structure theory, the UCC Ansatz remains relatively unexplored for the problem of molecular vibrations. In this contribution, working equations for the unitary vibrational coupled cluster (UVCC) Ansatz are derived, implemented, and benchmarked. Accuracy and convergence of state-specific excitation energies toward the full vibrational configuration interaction (FVCI) limit are observed to be comparable to vibrational coupled cluster theory. In addition, the overlap of a truncated UVCC state with the FVCI state is shown to exhibit some interesting properties from the perspective of fault-tolerant quantum computing.
Collapse
Affiliation(s)
- Rasmus Berg Jensen
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
- Kvantify Aps, DK-2300 Copenhagen S, Denmark
| | - Ove Christiansen
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
- Kvantify Aps, DK-2300 Copenhagen S, Denmark
| |
Collapse
|
6
|
Sangiogo Gil E, Oppel M, Kottmann JS, González L. SHARC meets TEQUILA: mixed quantum-classical dynamics on a quantum computer using a hybrid quantum-classical algorithm. Chem Sci 2025; 16:596-609. [PMID: 39703417 PMCID: PMC11653199 DOI: 10.1039/d4sc04987j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 11/27/2024] [Indexed: 12/21/2024] Open
Abstract
Recent developments in quantum computing are highly promising, particularly in the realm of quantum chemistry. Due to the noisy nature of currently available quantum hardware, hybrid quantum-classical algorithms have emerged as a reliable option for near-term simulations. Mixed quantum-classical dynamics methods effectively capture nonadiabatic effects by integrating classical nuclear dynamics with quantum chemical computations of the electronic properties. However, these methods face challenges due to the high computational cost of the quantum chemistry part. To mitigate the computational demand, we propose a method where the required electronic properties are computed through a hybrid quantum-classical approach that combines classical and quantum hardware. This framework employs the variational quantum eigensolver and variational quantum deflation algorithms to obtain ground and excited state energies, gradients, nonadiabatic coupling vectors, and transition dipole moments. These quantities are used to propagate the nonadiabatic molecular dynamics using the Tully's fewest switches surface hopping method, although the implementation is also compatible with other molecular dynamics approaches. The approach, implemented by integrating the molecular dynamics program package SHARC with the TEQUILA quantum computing framework, is validated by studying the cis-trans photoisomerization of methanimine and the electronic relaxation of ethylene. The results show qualitatively accurate molecular dynamics that align with experimental findings and other computational studies. This work is expected to mark a significant step towards achieving a "quantum advantage" for realistic chemical simulations.
Collapse
Affiliation(s)
- Eduarda Sangiogo Gil
- Faculty of Chemistry, Institute of Theoretical Chemistry, Universität Wien A-1090 Vienna Austria
| | - Markus Oppel
- Faculty of Chemistry, Institute of Theoretical Chemistry, Universität Wien A-1090 Vienna Austria
| | - Jakob S Kottmann
- Institute for Computer Science, Center for Advanced Analytics and Predictive Sciences, Universität Augsburg Augsburg Germany
| | - Leticia González
- Faculty of Chemistry, Institute of Theoretical Chemistry, Universität Wien A-1090 Vienna Austria
| |
Collapse
|
7
|
Fleury A, Brown J, Lloyd E, Hernandez M, Kim IH. Nonunitary Coupled Cluster Enabled by Midcircuit Measurements on Quantum Computers. J Chem Theory Comput 2024; 20:10807-10816. [PMID: 39648433 DOI: 10.1021/acs.jctc.4c00837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
Many quantum algorithms rely on a quality initial state for optimal performance. Preparing an initial state for specific applications can considerably reduce the cost of probabilistic algorithms such as the well studied quantum phase estimation (QPE). Fortunately, in the application space of quantum chemistry, generating approximate wave functions for molecular systems is well studied, and quantum computing algorithms stand to benefit from importing these classical methods directly into a quantum circuit. In this work, we propose a state preparation method based on coupled cluster (CC) theory, which is a pillar of quantum chemistry on classical computers, by incorporating midcircuit measurements into the circuit construction. Currently, the most well studied state preparation method for quantum chemistry on quantum computers is the variational quantum eigensolver (VQE) with a unitary-CC with single- and double-electron excitation terms (UCCSD) ansatz whose operations are limited to unitary gates. We verify the accuracy of our state preparation protocol using midcircuit measurements by performing energy evaluation and state overlap computation for a set of small chemical systems. We further demonstrate that our approach leads to a reduction of the classical computation overhead, and the number of CNOT and T gates by 28 and 57% on average when compared against the standard VQE-UCCSD protocol.
Collapse
Affiliation(s)
| | - James Brown
- qBraid Co., Chicago, Illinois 60615, United States
| | - Erika Lloyd
- SandboxAQ, Palo Alto, California 94301, United States
| | | | - Isaac H Kim
- Department of Computer Science, University of California, Davis, California 95616, United States
| |
Collapse
|
8
|
Burton HGA. Tiled unitary product states for strongly correlated Hamiltonians. Faraday Discuss 2024; 254:157-169. [PMID: 39049810 DOI: 10.1039/d4fd00064a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Approximating the electronic wave function for strongly correlated systems remains a major theoretical challenge. Emerging quantum computers can enable new types of wave-function ansatz to be considered, with the potential to overcome the exponential memory storage for strong correlation. I have recently introduced the tiled Unitary Product States (tUPS) ansatz, which successfully combines the preservation of particle-number and spin symmetry with shallow quantum circuits and local qubit connectivity [H. G. A. Burton, Phys. Rev. Res., 2024, 6, 023300]. In this contribution, I investigate the accuracy of this tUPS hierarchy for strongly-correlated Hamiltonians. I consider the picket-fence pairing Hamiltonian and the two-dimensional Hubbard lattice, which collectively describe a range of strong correlation mechanisms found in molecules. Numerical results demonstrate that highly accurate energies can be achieved with a compact approximation for both weak and strong correlation in the Hubbard model, and the repulsive pairing regime. These data provide valuable insights into the applicability of the tUPS hierarchy for strong electron correlation.
Collapse
Affiliation(s)
- Hugh G A Burton
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| |
Collapse
|
9
|
Magnusson E, Fitzpatrick A, Knecht S, Rahm M, Dobrautz W. Towards efficient quantum computing for quantum chemistry: reducing circuit complexity with transcorrelated and adaptive ansatz techniques. Faraday Discuss 2024; 254:402-428. [PMID: 39083018 DOI: 10.1039/d4fd00039k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
The near-term utility of quantum computers is hindered by hardware constraints in the form of noise. One path to achieving noise resilience in hybrid quantum algorithms is to decrease the required circuit depth - the number of applied gates - to solve a given problem. This work demonstrates how to reduce circuit depth by combining the transcorrelated (TC) approach with adaptive quantum ansätze and their implementations in the context of variational quantum imaginary time evolution (AVQITE). The combined TC-AVQITE method is used to calculate ground state energies across the potential energy surfaces of H4, LiH, and H2O. In particular, H4 is a notoriously difficult case where unitary coupled cluster theory, including singles and doubles excitations, fails to provide accurate results. Adding TC yields energies close to the complete basis set (CBS) limit while reducing the number of necessary operators - and thus circuit depth - in the adaptive ansätze. The reduced circuit depth furthermore makes our algorithm more noise-resilient and accelerates convergence. Our study demonstrates that combining the TC method with adaptive ansätze yields compact, noise-resilient, and easy-to-optimize quantum circuits that yield accurate quantum chemistry results close to the CBS limit.
Collapse
Affiliation(s)
- Erika Magnusson
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden.
| | | | - Stefan Knecht
- Algorithmiq Ltd, Kanavakatu 3C, FI-00160 Helsinki, Finland
| | - Martin Rahm
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden.
| | - Werner Dobrautz
- Department of Chemistry and Chemical Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden.
| |
Collapse
|
10
|
Wiersema R, Kökcü E, Kemper AF, Bakalov BN. Classification of dynamical Lie algebras of 2-local spin systems on linear, circular and fully connected topologies. NPJ QUANTUM INFORMATION 2024; 10:110. [PMID: 39525947 PMCID: PMC11540907 DOI: 10.1038/s41534-024-00900-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Much is understood about 1-dimensional spin chains in terms of entanglement properties, physical phases, and integrability. However, the Lie algebraic properties of the Hamiltonians describing these systems remain largely unexplored. In this work, we provide a classification of all Lie algebras generated by the terms of 2-local spin chain Hamiltonians, or so-called dynamical Lie algebras, on 1-dimensional linear and circular lattice structures. We find 17 unique dynamical Lie algebras. Our classification includes some well-known models such as the transverse-field Ising model and the Heisenberg chain, and we also find more exotic classes of Hamiltonians that appear new. In addition to the closed and open spin chains, we consider systems with a fully connected topology, which may be relevant for quantum machine learning approaches. We discuss the practical implications of our work in the context of variational quantum computing, quantum control and the spin chain literature.
Collapse
Affiliation(s)
- Roeland Wiersema
- Vector Institute, MaRS Centre, Toronto, ON M5G 1M1 Canada
- Department of Physics and Astronomy, University of Waterloo, Ontario, N2L 3G1 Canada
- Xanadu, Toronto, ON M5G 2C8 Canada
| | - Efekan Kökcü
- Department of Physics, North Carolina State University, Raleigh, NC 27695 USA
| | - Alexander F. Kemper
- Department of Physics, North Carolina State University, Raleigh, NC 27695 USA
| | - Bojko N. Bakalov
- Department of Mathematics, North Carolina State University, Raleigh, NC 27695 USA
| |
Collapse
|
11
|
Li HE, Li X, Huang JC, Zhang GZ, Shen ZP, Zhao C, Li J, Hu HS. Variational quantum imaginary time evolution for matrix product state Ansatz with tests on transcorrelated Hamiltonians. J Chem Phys 2024; 161:144104. [PMID: 39377325 DOI: 10.1063/5.0228731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024] Open
Abstract
The matrix product state (MPS) Ansatz offers a promising approach for finding the ground state of molecular Hamiltonians and solving quantum chemistry problems. Building on this concept, the proposed technique of quantum circuit MPS (QCMPS) enables the simulation of chemical systems using a relatively small number of qubits. In this study, we enhance the optimization performance of the QCMPS Ansatz by employing the variational quantum imaginary time evolution (VarQITE) approach. Guided by McLachlan's variational principle, the VarQITE method provides analytical metrics and gradients, resulting in improved convergence efficiency and robustness of the QCMPS. We validate these improvements numerically through simulations of H2, H4, and LiH molecules. In addition, given that VarQITE is applicable to non-Hermitian Hamiltonians, we evaluate its effectiveness in preparing the ground state of transcorrelated Hamiltonians. This approach yields energy estimates comparable to the complete basis set (CBS) limit while using even fewer qubits. In particular, we perform simulations of the beryllium atom and LiH molecule using only three qubits, maintaining high fidelity with the CBS ground state energy of these systems. This qubit reduction is achieved through the combined advantages of both the QCMPS Ansatz and transcorrelation. Our findings demonstrate the potential practicality of this quantum chemistry algorithm on near-term quantum devices.
Collapse
Affiliation(s)
- Hao-En Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Xiang Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jia-Cheng Huang
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Guang-Ze Zhang
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Zhu-Ping Shen
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Chen Zhao
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| | - Jun Li
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalytic Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Fundamental Science Center of Rare Earths, Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou 341000, China
| | - Han-Shi Hu
- Department of Chemistry and Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Tsinghua University, Beijing 100084, China
| |
Collapse
|
12
|
Motta M, Sung KJ, Shee J. Quantum Algorithms for the Variational Optimization of Correlated Electronic States with Stochastic Reconfiguration and the Linear Method. J Phys Chem A 2024; 128:8762-8776. [PMID: 39348598 DOI: 10.1021/acs.jpca.4c02847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Solving the electronic Schrodinger equation for strongly correlated ground states is a long-standing challenge. We present quantum algorithms for the variational optimization of wave functions correlated by products of unitary operators, such as Local Unitary Cluster Jastrow (LUCJ) ansatzes, using stochastic reconfiguration (SR) and the linear method (LM). While an implementation on classical computing hardware would require exponentially growing compute cost, the cost (number of circuits and shots) of our quantum algorithms is polynomial in system size. We find that classical simulations of optimization with the linear method consistently find lower energy solutions than with the L-BFGS-B optimizer across the dissociation curves of the notoriously difficult N2 and C2 dimers; LUCJ predictions of the ground-state energies deviate from exact diagonalization by 1 kcal/mol or less at all points on the potential energy curve. While we do characterize the effect of shot noise on the LM optimization, these noiseless results highlight the critical but often overlooked role that optimization techniques must play in attacking the electronic structure problem (on both classical and quantum hardware), for which even mean-field optimization is formally NP hard. We also discuss the challenge of obtaining smooth curves in these strongly correlated regimes, and propose a number of quantum-friendly solutions ranging from symmetry-projected ansatz forms to a symmetry-constrained optimization algorithm.
Collapse
Affiliation(s)
- Mario Motta
- IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - Kevin J Sung
- IBM Quantum, IBM T.J. Watson Research Center, Yorktown Heights, New York 10598, United States
| | - James Shee
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
13
|
Sugisaki K, Nakano T, Mochizuki Y. Size-consistency and orbital-invariance issues revealed by VQE-UCCSD calculations with the FMO scheme. J Comput Chem 2024; 45:2204-2213. [PMID: 38795375 DOI: 10.1002/jcc.27438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 05/27/2024]
Abstract
The fragment molecular orbital (FMO) scheme is one of the popular fragmentation-based methods and has the potential advantage of making the circuit shallow for quantum chemical calculations on quantum computers. In this study, we used a GPU-accelerated quantum simulator (cuQuantum) to perform the electron correlation part of the FMO calculation as unitary coupled-cluster singles and doubles (UCCSD) with the variational quantum eigensolver (VQE) for hydrogen-bonded (FH) 3 and (FH) 2 -H 2 O systems with the STO-3G basis set. VQE-UCCSD calculations were performed using both canonical and localized MO sets, and the results were examined from the point of view of size-consistency and orbital-invariance affected by the Trotter error. It was found that the use of localized MO leads to better results, especially for (FH) 2 -H 2 O. The GPU acceleration was substantial for the simulations with larger numbers of qubits, and was about a factor of 6.7-7.7 for 18 qubit systems.
Collapse
Affiliation(s)
- Kenji Sugisaki
- Graduate School of Science and Technology, Keio University, Kawasaki, Japan
- Quantum Computing Center, Keio University, Yokohama, Japan
- Centre for Quantum Engineering, Research and Education, TCG Centres for Research and Education in Science and Technology, Kolkata, India
| | - Tatsuya Nakano
- Division of Medicinal Safety Science, National Institute of Health Sciences, Kawasaki, Japan
| | - Yuji Mochizuki
- Department of Chemistry and Research Center for Smart Molecules, Faculty of Science, Rikkyo University, Toshima-ku, Japan
- Institute of Industrial Science, The University of Tokyo, Meguro-ku, Japan
| |
Collapse
|
14
|
Kjellgren ER, Reinholdt P, Ziems KM, Sauer SPA, Coriani S, Kongsted J. Divergences in classical and quantum linear response and equation of motion formulations. J Chem Phys 2024; 161:124112. [PMID: 39319646 DOI: 10.1063/5.0225409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 09/10/2024] [Indexed: 09/26/2024] Open
Abstract
Calculating molecular properties using quantum devices can be performed through the quantum linear response (qLR) or, equivalently, the quantum equation of motion (qEOM) formulations. Different parameterizations of qLR and qEOM are available, namely naïve, projected, self-consistent, and state-transfer. In the naïve and projected parameterizations, the metric is not the identity, and we show that it depends on redundant orbital rotations. This dependency may lead to divergences in the excitation energies for certain choices of the redundant orbital rotation parameters in an idealized noiseless setting. Furthermore, this leads to a significant variance when calculations include statistical noise from finite quantum sampling.
Collapse
Affiliation(s)
- Erik Rosendahl Kjellgren
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Karl Michael Ziems
- DTU Chemistry, Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen Ø, Denmark
| | - Sonia Coriani
- DTU Chemistry, Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
15
|
Windom ZW, Claudino D, Bartlett RJ. An Attractive Way to Correct for Missing Singles Excitations in Unitary Coupled Cluster Doubles Theory. J Phys Chem A 2024; 128:7036-7045. [PMID: 39114900 DOI: 10.1021/acs.jpca.4c03935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Coupled cluster methods based exclusively on double excitations are comparatively "cheap" and interesting model chemistries, as they are typically able to capture the bulk of the dynamic electron correlation effects. The trade-off in such approximations is that the effect of neglected excitations, particularly single excitations, can be considerable. Using standard and electron-pair-restricted T2 operators to define two flavors of unitary coupled cluster doubles (UCCD) methods, we investigate the extent to which missing single excitations can be recovered from low-order corrections in many-body perturbation theory (MBPT) within the unitary coupled cluster (UCC) formalism. Our analysis includes the derivations of finite-order UCC energy functionals, which are used as a basis to define perturbative estimates of missed single excitations. This leads to the novel UCCD[4S] and UCCD[6S] methods, which consider energy corrections for missing single excitations through fourth- and sixth-order in MBPT, respectively. We also apply the same methodology to the electron-pair-restricted ansatz, but the improvements are only marginal. Our findings show that augmenting UCCD with these post hoc perturbative corrections can lead to UCCSD-quality results.
Collapse
Affiliation(s)
- Zachary W Windom
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
- Quantum Information Science Section, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Daniel Claudino
- Quantum Information Science Section, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Rodney J Bartlett
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
16
|
Li W, Yin Z, Li X, Ma D, Yi S, Zhang Z, Zou C, Bu K, Dai M, Yue J, Chen Y, Zhang X, Zhang S. A hybrid quantum computing pipeline for real world drug discovery. Sci Rep 2024; 14:16942. [PMID: 39043787 PMCID: PMC11266395 DOI: 10.1038/s41598-024-67897-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024] Open
Abstract
Quantum computing, with its superior computational capabilities compared to classical approaches, holds the potential to revolutionize numerous scientific domains, including pharmaceuticals. However, the application of quantum computing for drug discovery has primarily been limited to proof-of-concept studies, which often fail to capture the intricacies of real-world drug development challenges. In this study, we diverge from conventional investigations by developing a hybrid quantum computing pipeline tailored to address genuine drug design problems. Our approach underscores the application of quantum computation in drug discovery and propels it towards more scalable system. We specifically construct our versatile quantum computing pipeline to address two critical tasks in drug discovery: the precise determination of Gibbs free energy profiles for prodrug activation involving covalent bond cleavage, and the accurate simulation of covalent bond interactions. This work serves as a pioneering effort in benchmarking quantum computing against veritable scenarios encountered in drug design, especially the covalent bonding issue present in both of the case studies, thereby transitioning from theoretical models to tangible applications. Our results demonstrate the potential of a quantum computing pipeline for integration into real world drug design workflows.
Collapse
Affiliation(s)
- Weitang Li
- Tencent Quantum Lab, Shenzhen, 518057, China
| | - Zhi Yin
- AceMapAI Biotechnology, Suzhou, 215000, China.
- School of Science, Ningbo University of Technology, Ningbo, 315211, China.
| | - Xiaoran Li
- AceMapAI Biotechnology, Suzhou, 215000, China
| | | | - Shuang Yi
- AceMapAI Biotechnology, Suzhou, 215000, China
| | | | - Chenji Zou
- Tencent Quantum Lab, Shenzhen, 518057, China
| | - Kunliang Bu
- Tencent Quantum Lab, Shenzhen, 518057, China
| | - Maochun Dai
- Tencent Quantum Lab, Shenzhen, 518057, China
| | - Jie Yue
- Tencent Quantum Lab, Shenzhen, 518057, China
| | - Yuzong Chen
- AceMapAI Joint Lab, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaojin Zhang
- AceMapAI Joint Lab, China Pharmaceutical University, Nanjing, 211198, China.
| | | |
Collapse
|
17
|
Choi S, Loaiza I, Lang RA, Martínez-Martínez LA, Izmaylov AF. Probing Quantum Efficiency: Exploring System Hardness in Electronic Ground State Energy Estimation. J Chem Theory Comput 2024; 20:5982-5993. [PMID: 38950444 DOI: 10.1021/acs.jctc.4c00298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
We consider the question of how correlated the system hardness is between classical algorithms of electronic structure theory in ground state estimation and quantum algorithms. To define the system hardness for classical algorithms, we employ empirical criterion based on the deviation of electronic energies produced by coupled cluster and configuration interaction methods from the exact ones along multiple bonds dissociation in a set of molecular systems. For quantum algorithms, we have selected the Variational Quantum Eigensolver (VQE) and Quantum Phase Estimation (QPE) methods. As characteristics of the system hardness for quantum methods, we analyzed circuit depths for the state preparation, the number of quantum measurements needed for the energy expectation value, and various cost characteristics for the Hamiltonian encodings via Trotter approximation and linear combination of unitaries (LCU). Our results show that the quantum resource requirements are mostly unaffected by classical hardness, with the only exception being the state preparation part, which contributes to both VQE and QPE algorithm costs. However, there are clear indications that constructing the initial state with a significant overlap with the true ground state is easier than obtaining the state with an energy expectation value within chemical precision. These results support optimism regarding the identification of a molecular system where a quantum algorithm excels over its classical counterpart, as quantum methods can maintain efficiency in classically challenging systems.
Collapse
Affiliation(s)
- Seonghoon Choi
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Ignacio Loaiza
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
- Zapata Computing Canada Inc., Toronto, Ontario M5C 3A1, Canada
| | - Robert A Lang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Luis A Martínez-Martínez
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Artur F Izmaylov
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
18
|
Majee K, Chakraborty S, Mukhopadhyay T, Nayak MK, Dutta AK. A reduced cost four-component relativistic unitary coupled cluster method for atoms and molecules. J Chem Phys 2024; 161:034101. [PMID: 39007370 DOI: 10.1063/5.0207091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/12/2024] [Indexed: 07/16/2024] Open
Abstract
We present a four-component relativistic unitary coupled cluster method for atoms and molecules. We have used commutator-based non-perturbative approximation using the "Bernoulli expansion" to derive an approximation to the relativistic unitary coupled cluster method. The performance of the full quadratic unitary coupled-cluster singles and doubles method (qUCCSD), as well as a perturbative approximation variant (UCC3), has been reported for both energies and properties. It can be seen that both methods give results comparable to those of the standard relativistic coupled cluster method. The qUCCSD method shows better agreement with experimental results due to the better inclusion of relaxation effects. The relativistic UCC3 and qUCCSD methods can simulate the spin-forbidden transition with easy access to transition properties. A natural spinor-based scheme to reduce the computational cost of relativistic UCC3 and qUCCSD methods has been discussed.
Collapse
Affiliation(s)
- Kamal Majee
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudipta Chakraborty
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Tamoghna Mukhopadhyay
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Malaya K Nayak
- Theoretical Chemistry Section, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
- Homi Bhabha National Institute, BARC Training School Complex, Anushakti Nagar, Mumbai 400094, India
| | - Achintya Kumar Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
19
|
Nykänen A, Thiessen L, Borrelli EM, Krishna V, Knecht S, Pavošević F. Toward Accurate Calculation of Excitation Energies on Quantum Computers with ΔADAPT-VQE: A Case Study of BODIPY Derivatives. J Phys Chem Lett 2024; 15:7111-7117. [PMID: 38954795 DOI: 10.1021/acs.jpclett.4c01301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Quantum chemistry simulations offer a cost-effective way to computationally design BODIPY photosensitizers. However, accurate predictions of excitation energies pose a challenge for time-dependent density functional theory and equation-of-motion coupled-cluster singles and doubles methods. By contrast, reliable predictions can be achieved by multireference quantum chemistry methods; unfortunately, their computational cost increases exponentially with the number of electrons. Alternatively, quantum computing holds potential for an exact simulation of the photophysical properties in a computationally more efficient way. Herein, we introduce the state-specific ΔUCCSD-VQE (unitary coupled-cluster singles and doubles-variational quantum eigensolver) and ΔADAPT-VQE methods in which the electronically excited state is calculated via a non-Aufbau configuration. We show for six BODIPY derivatives that the proposed methods predict accurate excitation energies that are in good agreement with those from experiments. Due to its performance and simplicity, we believe that ΔADAPT will become a useful approach for the simulation of BODIPY photosensitizers on near-term quantum devices.
Collapse
Affiliation(s)
- Anton Nykänen
- Algorithmiq Ltd., Kanavakatu 3C, FI-00160 Helsinki, Finland
| | | | | | - Vijay Krishna
- Department of Biomedical Engineering, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, United States
- Department of Biomedical Engineering, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Stefan Knecht
- Algorithmiq Ltd., Kanavakatu 3C, FI-00160 Helsinki, Finland
| | | |
Collapse
|
20
|
Yao Q, Ji Q, Li X, Zhang Y, Chen X, Ju MG, Liu J, Wang J. Machine Learning Accelerates Precise Excited-State Potential Energy Surface Calculations on a Quantum Computer. J Phys Chem Lett 2024; 15:7061-7068. [PMID: 38950102 DOI: 10.1021/acs.jpclett.4c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
Electronically excited-state problems represent a crucial research field in quantum chemistry, closely related to numerous practical applications in photophysics and photochemistry. The emerging of quantum computing provides a promising computational paradigm to solve the Schrödinger equation for predicting potential energy surfaces (PESs). Here, we present a deep neural network model to predict parameters of the quantum circuits within the framework of variational quantum deflation and subspace search variational quantum eigensolver, which are two popular excited-state algorithms to implement on a quantum computer. The new machine learning-assisted algorithm is employed to study the excited-state PESs of small molecules, achieving highly accurate predictions. We then apply this algorithm to study the excited-state properties of the ArF system, which is essential to a gas laser. Through this study, we believe that with future advancements in hardware capabilities, quantum computing could be harnessed to solve excited-state problems for a broad range of systems.
Collapse
Affiliation(s)
- Qianjun Yao
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Qun Ji
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Xiaopeng Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yehui Zhang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Xinyu Chen
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Ming-Gang Ju
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
| | - Jie Liu
- Hefei National Laboratory, Hefei 230088, China
| | - Jinlan Wang
- Key Laboratory of Quantum Materials and Devices of Ministry of Education, School of Physics, Southeast University, Nanjing 211189, China
- Suzhou Laboratory, Suzhou 215009, China
| |
Collapse
|
21
|
Windom ZW, Claudino D, Bartlett RJ. A new "gold standard": Perturbative triples corrections in unitary coupled cluster theory and prospects for quantum computing. J Chem Phys 2024; 160:214113. [PMID: 38832905 DOI: 10.1063/5.0202567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 05/16/2024] [Indexed: 06/06/2024] Open
Abstract
A major difficulty in quantum simulation is the adequate treatment of a large collection of entangled particles, synonymous with electron correlation in electronic structure theory, with coupled cluster (CC) theory being the leading framework for dealing with this problem. Augmenting computationally affordable low-rank approximations in CC theory with a perturbative account of higher-rank excitations is a tractable and effective way of accounting for the missing electron correlation in those approximations. This is perhaps best exemplified by the "gold standard" CCSD(T) method, which bolsters the baseline CCSD with the effects of triple excitations using considerations from many-body perturbation theory (MBPT). Despite this established success, such a synergy between MBPT and the unitary analog of CC theory (UCC) has not been explored. In this work, we propose a similar approach wherein converged UCCSD amplitudes are leveraged to evaluate energy corrections associated with triple excitations, leading to the UCCSD[T] method. In terms of quantum computing, this correction represents an entirely classical post-processing step that improves the energy estimate by accounting for triple excitation effects without necessitating new quantum algorithm developments or increasing demand for quantum resources. The rationale behind this choice is shown to be rigorous by studying the properties of finite-order UCC energy functionals, and our efforts do not support the addition of the fifth-order contributions as in the (T) correction. We assess the performance of these approaches on a collection of small molecules and demonstrate the benefits of harnessing the inherent synergy between MBPT and UCC theories.
Collapse
Affiliation(s)
- Zachary W Windom
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
- Quantum Information Science Section, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Daniel Claudino
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Rodney J Bartlett
- Quantum Theory Project, University of Florida, Gainesville, Florida 32611, USA
| |
Collapse
|
22
|
Liu J, Ma H, Shang H, Li Z, Yang J. Quantum-centric high performance computing for quantum chemistry. Phys Chem Chem Phys 2024; 26:15831-15843. [PMID: 38787657 DOI: 10.1039/d4cp00436a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
High performance computing (HPC) is renowned for its capacity to tackle complex problems. Meanwhile, quantum computing (QC) provides a potential way to accurately and efficiently solve quantum chemistry problems. The emerging field of quantum-centric high performance computing (QCHPC), which merges these two powerful technologies, is anticipated to enhance computational capabilities for solving challenging problems in quantum chemistry. The implementation of QCHPC for quantum chemistry requires interdisciplinary research and collaboration across multiple fields, including quantum chemistry, quantum physics, computer science and so on. This perspective provides an introduction to the quantum algorithms that are suitable for deployment in QCHPC, focusing on conceptual insights rather than technical details. Parallel strategies to implement these algorithms on quantum-centric supercomputers are discussed. We also summarize high performance quantum emulating simulators, which are considered a viable tool to explore QCHPC. We conclude with challenges and outlooks in this field.
Collapse
Affiliation(s)
- Jie Liu
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China.
| | - Huan Ma
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China.
| | - Honghui Shang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Zhenyu Li
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China.
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Jinlong Yang
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China.
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
23
|
Dobrautz W, Sokolov IO, Liao K, Ríos PL, Rahm M, Alavi A, Tavernelli I. Toward Real Chemical Accuracy on Current Quantum Hardware Through the Transcorrelated Method. J Chem Theory Comput 2024; 20:4146-4160. [PMID: 38723159 PMCID: PMC11137825 DOI: 10.1021/acs.jctc.4c00070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 05/29/2024]
Abstract
Quantum computing is emerging as a new computational paradigm with the potential to transform several research fields including quantum chemistry. However, current hardware limitations (including limited coherence times, gate infidelities, and connectivity) hamper the implementation of most quantum algorithms and call for more noise-resilient solutions. We propose an explicitly correlated Ansatz based on the transcorrelated (TC) approach to target these major roadblocks directly. This method transfers, without any approximation, correlations from the wave function directly into the Hamiltonian, thus reducing the resources needed to achieve accurate results with noisy quantum devices. We show that the TC approach allows for shallower circuits and improves the convergence toward the complete basis set limit, providing energies within chemical accuracy to experiment with smaller basis sets and, thus, fewer qubits. We demonstrate our method by computing bond lengths, dissociation energies, and vibrational frequencies close to experimental results for the hydrogen dimer and lithium hydride using two and four qubits, respectively. To demonstrate our approach's current and near-term potential, we perform hardware experiments, where our results confirm that the TC method paves the way toward accurate quantum chemistry calculations already on today's quantum hardware.
Collapse
Affiliation(s)
- Werner Dobrautz
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| | - Igor O. Sokolov
- IBM
Quantum, IBM Research Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| | - Ke Liao
- Max
Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Pablo López Ríos
- Max
Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
| | - Martin Rahm
- Department
of Chemistry and Chemical Engineering, Chalmers
University of Technology, 41296 Gothenburg, Sweden
| | - Ali Alavi
- Max
Planck Institute for Solid State Research, Heisenbergstr. 1, 70569 Stuttgart, Germany
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Ivano Tavernelli
- IBM
Quantum, IBM Research Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland
| |
Collapse
|
24
|
Li W, Ge Y, Zhang SX, Chen YQ, Zhang S. Efficient and Robust Parameter Optimization of the Unitary Coupled-Cluster Ansatz. J Chem Theory Comput 2024; 20:3683-3696. [PMID: 38639446 DOI: 10.1021/acs.jctc.4c00155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
The variational quantum eigensolver (VQE) framework has been instrumental in advancing near-term quantum algorithms. However, parameter optimization remains a significant bottleneck for VQE, requiring a large number of measurements for successful algorithm execution. In this paper, we propose sequential optimization with approximate parabola (SOAP) as an efficient and robust optimizer specifically designed for parameter optimization of the unitary coupled-cluster ansatz on quantum computers. SOAP leverages sequential optimization and approximates the energy landscape as quadratic functions, minimizing the number of energy evaluations required to optimize each parameter. To capture parameter correlations, SOAP incorporates the average direction from previous iterations into the optimization direction set. Numerical benchmark studies on molecular systems demonstrate that SOAP achieves significantly faster convergence and greater robustness to noise compared with traditional optimization methods. Furthermore, numerical simulations of up to 20 qubits reveal that SOAP scales well with the number of parameters in the ansatz. The exceptional performance of SOAP is further validated through experiments on a superconducting quantum computer using a 2-qubit model system.
Collapse
Affiliation(s)
- Weitang Li
- Tencent Quantum Lab, Tencent, Shenzhen 518057, China
| | - Yufei Ge
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Shi-Xin Zhang
- Tencent Quantum Lab, Tencent, Shenzhen 518057, China
| | - Yu-Qin Chen
- Tencent Quantum Lab, Tencent, Shenzhen 518057, China
| | - Shengyu Zhang
- Tencent Quantum Lab, Tencent, Hong Kong 999077, China
| |
Collapse
|
25
|
Kottmann JS, Scala F. Quantum Algorithmic Approach to Multiconfigurational Valence Bond Theory: Insights from Interpretable Circuit Design. J Chem Theory Comput 2024; 20:3514-3523. [PMID: 38626727 DOI: 10.1021/acs.jctc.3c00565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2024]
Abstract
Efficient ways to prepare Fermionic ground states on quantum computers are in high demand, and different techniques have been developed over the past few years. Despite having a vast set of methods, it is still unclear which method performs well for which system. In this work, we combine interpretable circuit designs with an effective basis approach in order to optimize a multiconfigurational valence bond wave function. Based on selected model systems, we show how this leads to an explainable performance. We demonstrate that the developed methodology outperforms related methods in terms of the size of the effective basis, as well as individual quantum resources for the involved circuits.
Collapse
Affiliation(s)
- Jakob S Kottmann
- Institute for Computer Science, University of Augsburg, 86159 Augsburg, Germany
| | - Francesco Scala
- Dipartimento di Fisica, Università degli Studi di Pavia 27100 Pavia, Italy
| |
Collapse
|
26
|
Jensen PWK, Kjellgren ER, Reinholdt P, Ziems KM, Coriani S, Kongsted J, Sauer SPA. Quantum Equation of Motion with Orbital Optimization for Computing Molecular Properties in Near-Term Quantum Computing. J Chem Theory Comput 2024; 20:3613-3625. [PMID: 38701352 DOI: 10.1021/acs.jctc.4c00069] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Determining the properties of molecules and materials is one of the premier applications of quantum computing. A major question in the field is how to use imperfect near-term quantum computers to solve problems of practical value. Inspired by the recently developed variants of the quantum counterpart of the equation-of-motion (qEOM) approach and the orbital-optimized variational quantum eigensolver (oo-VQE), we present a quantum algorithm (oo-VQE-qEOM) for the calculation of molecular properties by computing expectation values on a quantum computer. We perform noise-free quantum simulations of BeH2 in the series of STO-3G/6-31G/6-31G* basis sets and of H4 and H2O in 6-31G using an active space of four electrons and four spatial orbitals (8 qubits) to evaluate excitation energies, electronic absorption, and, for twisted H4, circular dichroism spectra. We demonstrate that the proposed algorithm can reproduce the results of conventional classical CASSCF calculations for these molecular systems.
Collapse
Affiliation(s)
- Phillip W K Jensen
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Erik Rosendahl Kjellgren
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Peter Reinholdt
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Karl Michael Ziems
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Sonia Coriani
- Department of Chemistry, Technical University of Denmark, Kemitorvet Building 207, DK-2800 Kongens Lyngby, Denmark
| | - Jacob Kongsted
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark
| | - Stephan P A Sauer
- Department of Chemistry, University of Copenhagen, DK-2100 Copenhagen, Denmark
| |
Collapse
|
27
|
Majland M, Ettenhuber P, Zinner NT, Christiansen O. Vibrational ADAPT-VQE: Critical points lead to problematic convergence. J Chem Phys 2024; 160:154109. [PMID: 38634491 DOI: 10.1063/5.0191074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/02/2024] [Indexed: 04/19/2024] Open
Abstract
Quantum chemistry is one of the most promising applications for which quantum computing is expected to have a significant impact. Despite considerable research in the field of electronic structure, calculating the vibrational properties of molecules on quantum computers remains a relatively unexplored field. In this work, we develop a vibrational Adaptive Derivative-Assembled Pseudo-Trotter Variational Quantum Eigensolver (vADAPT-VQE) formalism based on an infinite product representation (IPR) of anti-Hermitian excitation operators of the Full Vibrational Configuration Interaction (FVCI) wavefunction, which allows for preparing eigenstates of vibrational Hamiltonians on quantum computers. In order to establish the vADAPT-VQE algorithm using the IPR, we study the exactness of disentangled Unitary Vibrational Coupled Cluster (dUVCC) theory and show that dUVCC can formally represent the FVCI wavefunction in an infinite expansion. To investigate the performance of the vADAPT-VQE algorithm, we numerically study whether the vADAPT-VQE algorithm generates a sequence of operators that may represent the FVCI wavefunction. Our numerical results indicate frequent appearance of critical points in the wavefunction preparation using vADAPT-VQE. These results imply that one may encounter diminishing usefulness when preparing vibrational wavefunctions on quantum computers using vADAPT-VQE and that additional studies are required to find methods that can circumvent this behavior.
Collapse
Affiliation(s)
- Marco Majland
- Kvantify Aps, DK-2300 Copenhagen S, Denmark
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | - Nikolaj Thomas Zinner
- Kvantify Aps, DK-2300 Copenhagen S, Denmark
- Department of Physics and Astronomy, Aarhus University, DK-8000 Aarhus C, Denmark
| | - Ove Christiansen
- Kvantify Aps, DK-2300 Copenhagen S, Denmark
- Department of Chemistry, Aarhus University, DK-8000 Aarhus C, Denmark
| |
Collapse
|
28
|
Wang Y, Mazziotti DA. Quantum simulation of conical intersections. Phys Chem Chem Phys 2024; 26:11491-11497. [PMID: 38587679 DOI: 10.1039/d4cp00391h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
We explore the simulation of conical intersections (CIs) on quantum devices, setting the groundwork for potential applications in nonadiabatic quantum dynamics within molecular systems. The intersecting potential energy surfaces of H3+ are computed from a variance-based contracted quantum eigensolver. We show how the CIs can be correctly described on quantum devices using wavefunctions generated by the anti-Hermitian contracted Schrödinger equation ansatz, which is a unitary transformation of wavefunctions that preserves the topography of CIs. A hybrid quantum-classical procedure is used to locate the seam of CIs. Additionally, we discuss the quantum implementation of the adiabatic to diabatic transformation and its relation to the geometric phase effect. Results on noisy intermediate-scale quantum devices showcase the potential of quantum computers in dealing with problems in nonadiabatic chemistry.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
| | - David A Mazziotti
- Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637, USA.
| |
Collapse
|
29
|
Halder D, Mondal D, Maitra R. Noise-independent route toward the genesis of a COMPACT ansatz for molecular energetics: A dynamic approach. J Chem Phys 2024; 160:124104. [PMID: 38526104 DOI: 10.1063/5.0198277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/06/2024] [Indexed: 03/26/2024] Open
Abstract
Recent advances in quantum information and quantum science have inspired the development of various compact, dynamically structured ansätze that are expected to be realizable in Noisy Intermediate-Scale Quantum (NISQ) devices. However, such ansätze construction strategies hitherto developed involve considerable measurements, and thus, they deviate significantly in the NISQ platform from their ideal structures. Therefore, it is imperative that the usage of quantum resources be minimized while retaining the expressivity and dynamical structure of the ansatz that can adapt itself depending on the degree of correlation. We propose a novel ansatz construction strategy based on the ab initio many-body perturbation theory that requires no pre-circuit measurement and, thus, remains structurally unaffected by any hardware noise. The accuracy and quantum complexity associated with the ansatz are solely dictated by a pre-defined perturbative order, as desired, and, hence, are tunable. Furthermore, the underlying perturbative structure of the ansatz construction pipeline enables us to decompose any high-rank excitation that appears in higher perturbative orders into the product of various low-rank operators, and it thus keeps the execution gate-depth to its minimum. With a number of challenging applications on strongly correlated systems, we demonstrate that our ansatz performs significantly better, both in terms of accuracy, parameter count, and circuit depth, in comparison to the allied unitary coupled cluster based ansätze.
Collapse
Affiliation(s)
- Dipanjali Halder
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Dibyendu Mondal
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rahul Maitra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
- Centre of Excellence in Quantum Information, Computing, Science and Technology, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
30
|
Cadi Tazi L, Thom AJW. Folded Spectrum VQE: A Quantum Computing Method for the Calculation of Molecular Excited States. J Chem Theory Comput 2024; 20:2491-2504. [PMID: 38492238 PMCID: PMC10976647 DOI: 10.1021/acs.jctc.3c01378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/18/2024]
Abstract
The recent developments of quantum computing present novel potential pathways for quantum chemistry as the scaling of the computational power of quantum computers could be harnessed to naturally encode and solve electronic structure problems. Theoretically exact quantum algorithms for chemistry have been proposed (e.g., quantum phase estimation), but the limited capabilities of current noisy intermediate-scale quantum devices motivated the development of less demanding hybrid algorithms. In this context, the variational quantum eigensolver (VQE) algorithm was successfully introduced as an effective method to compute the ground-state energies of small molecules. This study investigates the folded spectrum (FS) method as an extension of the VQE algorithm for the computation of molecular excited states. It provides the possibility of directly computing excited states around a selected target energy using the same quantum circuit as for the ground-state calculation. Inspired by the variance-based methods from the quantum Monte Carlo literature, the FS method minimizes the energy variance, thus, in principle, requiring a computationally expensive squared Hamiltonian to be applied. We alleviate this potentially poor scaling by employing a Pauli grouping procedure to identify sets of commuting Pauli strings that can be evaluated simultaneously. This allows for a significant reduction in the computational cost. We applied the FS-VQE method to small molecules (H2, LiH), obtaining all electronic excited states with chemical accuracy on ideal quantum simulators. Furthermore, we explore the application of quantum error mitigation techniques, demonstrating improved energy accuracy on noisy simulators compared with simulations without mitigation.
Collapse
Affiliation(s)
- Lila Cadi Tazi
- École
Normale Supérieure Paris-Saclay, Université Paris-Saclay, Gif-sur-Yvette 91190, France
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| | - Alex J. W. Thom
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Cambridge CB2 1EW, U.K.
| |
Collapse
|
31
|
Zhu L, Liang S, Yang C, Li X. Optimizing Shot Assignment in Variational Quantum Eigensolver Measurement. J Chem Theory Comput 2024; 20:2390-2403. [PMID: 38483826 DOI: 10.1021/acs.jctc.3c01113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Variational quantum eigensolvers (VQEs) show promise for tackling complex quantum chemistry challenges and realizing quantum advantages. However, in VQE, the measurement step encounters difficulties due to errors in objective function evaluation, e.g., the energy of a quantum state. While increasing the number of measurement shots can mitigate measurement errors, this approach leads to higher costs. Strategies for shot assignment have been investigated, allowing for the allocation of varying shot numbers to different Hamiltonian terms and reducing measurement variance through term-specific insights. In this paper, we introduce a dynamic approach, the Variance-Preserved Shot Reduction (VPSR) method. This technique strives to minimize the total number of measurement shots while preserving the variance of measurements throughout the VQE process. Our numerical experiments on H2 and LiH molecular ground states demonstrate the effectiveness of VPSR in achieving VQE convergence with a notably lower shot count.
Collapse
Affiliation(s)
- Linghua Zhu
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| | - Senwei Liang
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Chao Yang
- Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Xiaosong Li
- Department of Chemistry, University of Washington, Seattle, Washington 98195, United States
| |
Collapse
|
32
|
Xiao X, Zhao H, Ren J, Fang WH, Li Z. Physics-Constrained Hardware-Efficient Ansatz on Quantum Computers That Is Universal, Systematically Improvable, and Size-Consistent. J Chem Theory Comput 2024; 20:1912-1922. [PMID: 38354395 DOI: 10.1021/acs.jctc.3c00966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Variational wave function ansätze are at the heart of solving quantum many-body problems in physics and chemistry. Previous designs of hardware-efficient ansatz (HEA) on quantum computers are largely based on heuristics and lack rigorous theoretical foundations. In this work, we introduce a physics-constrained approach for designing HEA with rigorous theoretical guarantees by imposing a few fundamental constraints. Specifically, we require that the target HEA to be universal, systematically improvable, and size-consistent, which is an important concept in quantum many-body theories for scalability but has been overlooked in previous designs of HEA. We extend the notion of size-consistency to HEA and present a concrete realization of HEA that satisfies all these fundamental constraints while only requiring linear qubit connectivity. The developed physics-constrained HEA is superior to other heuristically designed HEA in terms of both accuracy and scalability, as demonstrated numerically for the Heisenberg model and some typical molecules. In particular, we find that restoring size-consistency can significantly reduce the number of layers needed to reach a certain accuracy. In contrast, the failure of other HEA to satisfy these constraints severely limits their scalability to larger systems with more than 10 qubits. Our work highlights the importance of incorporating physical constraints into the design of HEA for efficiently solving many-body problems on quantum computers.
Collapse
Affiliation(s)
- Xiaoxiao Xiao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Hewang Zhao
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiajun Ren
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Zhendong Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
33
|
Prasad VK, Cheng F, Fekl U, Jacobsen HA. Applications of noisy quantum computing and quantum error mitigation to "adamantaneland": a benchmarking study for quantum chemistry. Phys Chem Chem Phys 2024; 26:4071-4082. [PMID: 38225897 DOI: 10.1039/d3cp03523a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
The field of quantum computing has the potential to transform quantum chemistry. The variational quantum eigensolver (VQE) algorithm has allowed quantum computing to be applied to chemical problems in the noisy intermediate-scale quantum (NISQ) era. Applications of VQE have generally focused on predicting absolute energies instead of chemical properties that are relative energy differences and that are most interesting to chemists studying a chemical problem. We address this shortcoming by constructing a molecular benchmark data set in this work containing isomers of C10H16 and carbocationic rearrangements of C10H15+, calculated at a high-level of theory. Using the data set, we compared noiseless VQE simulations to conventionally performed density functional and wavefunction theory-based methods to understand the quality of results. We also investigated the effectiveness of a quantum state tomography-based error mitigation technique in applications of VQE under noise (simulated and real). Our findings reveal that the use of quantum error mitigation is crucial in the NISQ era and advantageous to yield almost noiseless quality results.
Collapse
Affiliation(s)
- Viki Kumar Prasad
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 Kings College Road, Toronto, Ontario, Canada, M5S 3G4. arno,
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada, L5L 1C6.
| | - Freeman Cheng
- Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, Ontario, Canada, M5S 2E4
| | - Ulrich Fekl
- Department of Chemical and Physical Sciences, University of Toronto Mississauga, 3359 Mississauga Road, Mississauga, Ontario, Canada, L5L 1C6.
| | - Hans-Arno Jacobsen
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 Kings College Road, Toronto, Ontario, Canada, M5S 3G4. arno,
- Department of Computer Science, University of Toronto, 40 St. George Street, Toronto, Ontario, Canada, M5S 2E4
| |
Collapse
|
34
|
Matoušek M, Pernal K, Pavošević F, Veis L. Variational Quantum Eigensolver Boosted by Adiabatic Connection. J Phys Chem A 2024; 128:687-698. [PMID: 38214999 PMCID: PMC10823474 DOI: 10.1021/acs.jpca.3c07590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/14/2024]
Abstract
In this work, we integrate the variational quantum eigensolver (VQE) with the adiabatic connection (AC) method for efficient simulations of chemical problems on near-term quantum computers. Orbital-optimized VQE methods are employed to capture the strong correlation within an active space, and classical AC corrections recover the dynamical correlation effects comprising electrons outside of the active space. On two challenging strongly correlated problems, namely, the dissociation of N2 and the electronic structure of the tetramethyleneethane biradical, we show that the combined VQE-AC approach enhances the performance of VQE dramatically. Moreover, since the AC corrections do not bring any additional requirements on quantum resources or measurements, they can actually boost the VQE algorithms. Our work paves the way toward quantum simulations of real-life problems on near-term quantum computers.
Collapse
Affiliation(s)
- Mikuláš Matoušek
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
- Faculty
of Mathematics and Physics, Charles University, 121 16 Prague, Czech Republic
| | - Katarzyna Pernal
- Institute
of Physics, Lodz University of Technology, ul. Wolczanska 217/221, 93-005 Lodz, Poland
| | | | - Libor Veis
- J.
Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, v.v.i., Dolejškova 3, 18223 Prague 8, Czech Republic
| |
Collapse
|
35
|
Sun J, Cheng L, Li W. Toward Chemical Accuracy with Shallow Quantum Circuits: A Clifford-Based Hamiltonian Engineering Approach. J Chem Theory Comput 2024; 20:695-707. [PMID: 38169365 DOI: 10.1021/acs.jctc.3c00886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Achieving chemical accuracy with shallow quantum circuits is a significant challenge in quantum computational chemistry, particularly for near-term quantum devices. In this work, we present a Clifford-based Hamiltonian engineering algorithm, namely CHEM, that addresses the trade-off between circuit depth and accuracy. Based on a variational quantum eigensolver and hardware-efficient ansatz, our method designs the Clifford-based Hamiltonian transformation that (1) ensures a set of initial circuit parameters corresponding to the Hartree-Fock energy can be generated, (2) effectively maximizes the initial energy gradient with respect to circuit parameters, (3) imposes negligible overhead for classical processing and does not require additional quantum resources, and (4) is compatible with any circuit topology. We demonstrate the efficacy of our approach using a quantum hardware emulator, achieving chemical accuracy for systems as large as 12 qubits with fewer than 30 two-qubit gates. Our Clifford-based Hamiltonian engineering approach offers a promising avenue for practical quantum computational chemistry on near-term quantum devices.
Collapse
Affiliation(s)
- Jiace Sun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Lixue Cheng
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Weitang Li
- Tencent Quantum Lab, Shenzhen 518057, China
| |
Collapse
|
36
|
Zeng X, Fan Y, Liu J, Li Z, Yang J. Quantum Neural Network Inspired Hardware Adaptable Ansatz for Efficient Quantum Simulation of Chemical Systems. J Chem Theory Comput 2023. [PMID: 38044845 DOI: 10.1021/acs.jctc.3c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
The variational quantum eigensolver is a promising way to solve the Schrödinger equation on a noisy intermediate-scale quantum (NISQ) computer, while its success relies on a well-designed wave function ansatz. Inspired by the quantum neural network, we propose a new hardware heuristic ansatz where its expressibility can be improved by increasing either the depth or the width of the circuit. Such a character makes this ansatz adaptable to different hardware environments. More importantly, it provides a general framework to improve the efficiency of the quantum resource utilization. For example, on a superconducting quantum computer where circuit depth is usually the bottleneck and the qubits thus cannot be fully used, circuit depth can be significantly reduced by introducing ancilla qubits. Ancilla qubits also make the circuit less sensitive to noises in practical application. These results open a new avenue to develop practical applications of quantum computation in the NISQ era.
Collapse
Affiliation(s)
- Xiongzhi Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Yi Fan
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
| | - Jie Liu
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Zhenyu Li
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| | - Jinlong Yang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei 230026, China
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China
| |
Collapse
|
37
|
Loaiza I, Izmaylov AF. Block-Invariant Symmetry Shift: Preprocessing Technique for Second-Quantized Hamiltonians to Improve Their Decompositions to Linear Combination of Unitaries. J Chem Theory Comput 2023; 19:8201-8209. [PMID: 37939198 DOI: 10.1021/acs.jctc.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Computational cost of energy estimation for molecular electronic Hamiltonians via quantum phase estimation (QPE) grows with the difference between the largest and smallest eigenvalues of the Hamiltonian. In this work, we propose a preprocessing procedure that reduces the norm of the Hamiltonian without changing its eigenspectrum for the target states of a particular symmetry. The new procedure, block-invariant symmetry shift (BLISS), builds an operator T̂ such that the cost of implementing H ^ - T ^ is reduced compared to that of Ĥ, yet H ^ - T ^ acts on the subspaces of interest the same way as Ĥ does. BLISS performance is demonstrated for a linear combination of unitaries (LCU)-based QPE approaches on a set of small molecules. Using the number of electrons as the symmetry specifying the target set of states, BLISS provided a factor of 2 reduction of 1-norm for several LCU decompositions compared to their unshifted versions.
Collapse
Affiliation(s)
- Ignacio Loaiza
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto M1C 1A4, Canada
- Zapata Computing Canada Inc., Toronto M5E 1E5, Canada
| | - Artur F Izmaylov
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto M5S 3H6, Canada
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto M1C 1A4, Canada
| |
Collapse
|
38
|
Wang W, Whitfield JD. Basis Set Generation and Optimization in the NISQ Era with Quiqbox.jl. J Chem Theory Comput 2023; 19:8032-8052. [PMID: 37924295 DOI: 10.1021/acs.jctc.3c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
Abstract
In the noisy intermediate-scale quantum era, ab initio computation of electronic structure problems has become one of the major benchmarks for identifying the boundary between classical and quantum computational power. Basis sets play a key role in the electronic structure methods implemented on both classical and quantum devices. To investigate the consequences of single-particle basis sets, we propose a framework for more customizable basis set generation and optimization. This framework allows composite basis sets to go beyond typical basis set frameworks, such as atomic basis sets, by introducing the concept of mixed-contracted Gaussian-type orbitals. These basis set generations set the stage for more flexible variational optimization of basis set parameters. To realize this framework, we have developed an open-source software package named "Quiqbox" in the Julia programming language. We demonstrate various examples of using Quiqbox for basis set optimization and generation, ranging from optimizing atomic basis sets on the Hartree-Fock level, preparing the initial state for variational quantum eigensolver computation, and constructing basis sets with completely delocalized orbitals. We also include various benchmarks of Quiqbox for basis set optimization and ab initial electronic structure computation.
Collapse
Affiliation(s)
- Weishi Wang
- Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, United States
| | - James D Whitfield
- Department of Physics and Astronomy, Dartmouth College, Hanover, New Hampshire 03755, United States
- AWS Center for Quantum Computing, Pasadena, California 91106, United States
| |
Collapse
|
39
|
Motta M, Sung KJ, Whaley KB, Head-Gordon M, Shee J. Bridging physical intuition and hardware efficiency for correlated electronic states: the local unitary cluster Jastrow ansatz for electronic structure. Chem Sci 2023; 14:11213-11227. [PMID: 37860666 PMCID: PMC10583744 DOI: 10.1039/d3sc02516k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
A prominent goal in quantum chemistry is to solve the molecular electronic structure problem for ground state energy with high accuracy. While classical quantum chemistry is a relatively mature field, the accurate and scalable prediction of strongly correlated states found, e.g., in bond breaking and polynuclear transition metal compounds remains an open problem. Within the context of a variational quantum eigensolver, we propose a new family of ansatzes which provides a more physically appropriate description of strongly correlated electrons than a unitary coupled cluster with single and double excitations (qUCCSD), with vastly reduced quantum resource requirements. Specifically, we present a set of local approximations to the unitary cluster Jastrow wavefunction motivated by Hubbard physics. As in the case of qUCCSD, exactly computing the energy scales factorially with system size on classical computers but polynomially on quantum devices. The local unitary cluster Jastrow ansatz removes the need for SWAP gates, can be tailored to arbitrary qubit topologies (e.g., square, hex, and heavy-hex), and is well-suited to take advantage of continuous sets of quantum gates recently realized on superconducting devices with tunable couplers. The proposed family of ansatzes demonstrates that hardware efficiency and physical transparency are not mutually exclusive; indeed, chemical and physical intuition regarding electron correlation can illuminate a useful path towards hardware-friendly quantum circuits.
Collapse
Affiliation(s)
- Mario Motta
- IBM Quantum, IBM Research - Almaden San Jose CA 95120 USA
| | - Kevin J Sung
- IBM Quantum, IBM T. J. Watson Research Center Yorktown Heights NY 10598 USA
| | - K Birgitta Whaley
- Department of Chemistry, University of California Berkeley CA 94720 USA
- Berkeley Quantum Information and Computation Center, University of California Berkeley CA 94720 USA
- Challenge Institute for Quantum Computation, University of California Berkeley CA 94720 USA
| | - Martin Head-Gordon
- Department of Chemistry, University of California Berkeley CA 94720 USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - James Shee
- Department of Chemistry, University of California Berkeley CA 94720 USA
- Department of Chemistry, Rice University Houston TX 77005 USA
| |
Collapse
|
40
|
Lang RA, Ganeshram A, Izmaylov AF. Growth Reduction of Similarity-Transformed Electronic Hamiltonians in Qubit Space. J Chem Theory Comput 2023; 19:6656-6667. [PMID: 37715716 DOI: 10.1021/acs.jctc.3c00712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/18/2023]
Abstract
Accurately solving the electronic structure problem through the variational quantum eigensolver (VQE) is hindered by the available quantum resources of current and near-term devices. One approach to relieving the circuit depth requirements for VQE is to "pre-process" the electronic Hamiltonian by a similarity transformation incorporating some degree of electronic correlation, with the remaining correlation left to be addressed by the circuit ansatz. This often comes at the price of a substantial increase in the number of terms to measure in the similarity-transformed Hamiltonian. In this work, we propose an efficient approach to sampling elements from the complete Pauli group for N qubits which minimizes the onset of new terms in the transformed Hamiltonian while facilitating substantial energy lowering. We benchmark the growth-mitigating generator selection technique for ground state energy estimations applied to models of the H4, N2, and H2O molecular systems. It is found that utilizing a selection procedure which obtains the growth-minimizing generator from the set of operators with the maximal energy gradient is the most competitive approach to reducing the onset of Hamiltonian terms while achieving systematic energy lowering of the reference state.
Collapse
Affiliation(s)
- Robert A Lang
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto M1C 1A4, Ontario, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto M5S 3H6, Ontario, Canada
| | - Aadithya Ganeshram
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto M1C 1A4, Ontario, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto M5S 3H6, Ontario, Canada
| | - Artur F Izmaylov
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto M1C 1A4, Ontario, Canada
| |
Collapse
|
41
|
Magoulas I, Evangelista FA. Unitary Coupled Cluster: Seizing the Quantum Moment. J Phys Chem A 2023; 127:6567-6576. [PMID: 37523485 PMCID: PMC10424243 DOI: 10.1021/acs.jpca.3c02781] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/08/2023] [Indexed: 08/02/2023]
Abstract
Shallow, CNOT-efficient quantum circuits are crucial for performing accurate computational chemistry simulations on current noisy quantum hardware. Here, we explore the usefulness of noniterative energy corrections, based on the method of moments of coupled-cluster theory, for accelerating convergence toward full configuration interaction. Our preliminary numerical results relying on iteratively constructed ansätze suggest that chemically accurate energies can be obtained with substantially more compact circuits, implying enhanced resilience to gate and decoherence noise.
Collapse
Affiliation(s)
- Ilias Magoulas
- Department of Chemistry and
Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A. Evangelista
- Department of Chemistry and
Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
42
|
Magoulas I, Evangelista FA. Linear-Scaling Quantum Circuits for Computational Chemistry. J Chem Theory Comput 2023; 19:4815-4821. [PMID: 37410884 PMCID: PMC10413858 DOI: 10.1021/acs.jctc.3c00376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Indexed: 07/08/2023]
Abstract
We have recently constructed compact, CNOT-efficient, quantum circuits for Fermionic and qubit excitations of arbitrary many-body rank [Magoulas, I.; Evangelista, F. A. J. Chem. Theory Comput. 2023, 19, 822]. Here, we present approximations of these circuits that substantially reduce the CNOT counts even further. Our preliminary numerical data, using the selected projective quantum eigensolver approach, show up to a 4-fold reduction in CNOTs. At the same time, there is practically no loss of accuracy in the energies compared to the parent implementation, while the ensuing symmetry breaking is essentially negligible.
Collapse
Affiliation(s)
- Ilias Magoulas
- Department of Chemistry and
Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A. Evangelista
- Department of Chemistry and
Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
43
|
Pyrkov A, Aliper A, Bezrukov D, Lin YC, Polykovskiy D, Kamya P, Ren F, Zhavoronkov A. Quantum computing for near-term applications in generative chemistry and drug discovery. Drug Discov Today 2023; 28:103675. [PMID: 37331692 DOI: 10.1016/j.drudis.2023.103675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/22/2023] [Accepted: 06/13/2023] [Indexed: 06/20/2023]
Abstract
In recent years, drug discovery and life sciences have been revolutionized with machine learning and artificial intelligence (AI) methods. Quantum computing is touted to be the next most significant leap in technology; one of the main early practical applications for quantum computing solutions is predicted to be in quantum chemistry simulations. Here, we review the near-term applications of quantum computing and their advantages for generative chemistry and highlight the challenges that can be addressed with noisy intermediate-scale quantum (NISQ) devices. We also discuss the possible integration of generative systems running on quantum computers into established generative AI platforms.
Collapse
Affiliation(s)
- Alexey Pyrkov
- Insilico Medicine Hong Kong Ltd, Pak Shek Kok, New Territories, Hong Kong.
| | - Alex Aliper
- Insilico Medicine AI Ltd, Masdar City, Abu Dhabi, United Arab Emirates
| | - Dmitry Bezrukov
- Insilico Medicine Hong Kong Ltd, Pak Shek Kok, New Territories, Hong Kong
| | - Yen-Chu Lin
- Insilico Medicine Taiwan Ltd, Taipei, Taiwan
| | | | | | - Feng Ren
- Insilico Medicine Shanghai Ltd, Shanghai, China
| | - Alex Zhavoronkov
- Insilico Medicine Hong Kong Ltd, Pak Shek Kok, New Territories, Hong Kong
| |
Collapse
|
44
|
Pérez-Obiol A, Romero AM, Menéndez J, Rios A, García-Sáez A, Juliá-Díaz B. Nuclear shell-model simulation in digital quantum computers. Sci Rep 2023; 13:12291. [PMID: 37516795 PMCID: PMC10387092 DOI: 10.1038/s41598-023-39263-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023] Open
Abstract
The nuclear shell model is one of the prime many-body methods to study the structure of atomic nuclei, but it is hampered by an exponential scaling on the basis size as the number of particles increases. We present a shell-model quantum circuit design strategy to find nuclear ground states by exploiting an adaptive variational quantum eigensolver algorithm. Our circuit implementation is in excellent agreement with classical shell-model simulations for a dozen of light and medium-mass nuclei, including neon and calcium isotopes. We quantify the circuit depth, width and number of gates to encode realistic shell-model wavefunctions. Our strategy also addresses explicitly energy measurements and the required number of circuits to perform them. Our simulated circuits approach the benchmark results exponentially with a polynomial scaling in quantum resources for each nucleus. This work paves the way for quantum computing shell-model studies across the nuclear chart and our quantum resource quantification may be used in configuration-interaction calculations of other fermionic systems.
Collapse
Affiliation(s)
- A Pérez-Obiol
- Barcelona Supercomputing Center, 08034, Barcelona, Spain.
| | - A M Romero
- Departament de Física Quàntica i Astrofísica (FQA), Universitat de Barcelona (UB), c. Martí i Franqués, 1, 08028, Barcelona, Spain.
- Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (UB), c. Martí i Franqués, 1, 08028, Barcelona, Spain.
| | - J Menéndez
- Departament de Física Quàntica i Astrofísica (FQA), Universitat de Barcelona (UB), c. Martí i Franqués, 1, 08028, Barcelona, Spain
- Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (UB), c. Martí i Franqués, 1, 08028, Barcelona, Spain
| | - A Rios
- Departament de Física Quàntica i Astrofísica (FQA), Universitat de Barcelona (UB), c. Martí i Franqués, 1, 08028, Barcelona, Spain
- Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (UB), c. Martí i Franqués, 1, 08028, Barcelona, Spain
| | - A García-Sáez
- Barcelona Supercomputing Center, 08034, Barcelona, Spain
- Qilimanjaro Quantum Tech, 08007, Barcelona, Spain
| | - B Juliá-Díaz
- Departament de Física Quàntica i Astrofísica (FQA), Universitat de Barcelona (UB), c. Martí i Franqués, 1, 08028, Barcelona, Spain
- Institut de Ciències del Cosmos (ICCUB), Universitat de Barcelona (UB), c. Martí i Franqués, 1, 08028, Barcelona, Spain
| |
Collapse
|
45
|
Schleich P, Boen J, Cincio L, Anand A, Kottmann JS, Tretiak S, Dub PA, Aspuru-Guzik A. Partitioning Quantum Chemistry Simulations with Clifford Circuits. J Chem Theory Comput 2023. [PMID: 37490516 DOI: 10.1021/acs.jctc.3c00335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Current quantum computing hardware is restricted by the availability of only few, noisy qubits which limits the investigation of larger, more complex molecules in quantum chemistry calculations on quantum computers in the near term. In this work, we investigate the limits of their classical and near-classical treatment while staying within the framework of quantum circuits and the variational quantum eigensolver. To this end, we consider naive and physically motivated, classically efficient product ansatz for the parametrized wavefunction adapting the separable-pair ansatz form. We combine it with post-treatment to account for interactions between subsystems originating from this ansatz. The classical treatment is given by another quantum circuit that has support between the enforced subsystems and is folded into the Hamiltonian. To avoid an exponential increase in the number of Hamiltonian terms, the entangling operations are constructed from purely Clifford or near-Clifford circuits. While Clifford circuits can be simulated efficiently classically, they are not universal. In order to account for missing expressibility, near-Clifford circuits with only few, selected non-Clifford gates are employed. The exact circuit structure to achieve this objective is molecule-dependent and is constructed using simulated annealing and genetic algorithms. We demonstrate our approach on a set of molecules of interest and investigate the extent of our methodology's reach.
Collapse
Affiliation(s)
- Philipp Schleich
- Department of Computer Science, University of Toronto, Toronto M5S 1A1, Canada
- Vector Institute for Artificial Intelligence, Toronto M5G 1M1, Canada
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Joseph Boen
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Department of Applied Mathematics & Statistics, Johns Hopkins University, Baltimore, Maryland 21218, United States
| | - Lukasz Cincio
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Abhinav Anand
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto M5S 1A1, Canada
| | - Jakob S Kottmann
- Department of Computer Science, University of Augsburg, Augsburg 86159, Germany
| | - Sergei Tretiak
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Pavel A Dub
- Chemistry Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Alán Aspuru-Guzik
- Department of Computer Science, University of Toronto, Toronto M5S 1A1, Canada
- Vector Institute for Artificial Intelligence, Toronto M5G 1M1, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto M5S 1A1, Canada
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto M5S 1A1, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto M5S 1A1, Canada
- Canadian Institute for Advanced Research (CIFAR) Lebovic Fellow, Toronto M5S 1M1, Canada
| |
Collapse
|
46
|
Majland M, Berg Jensen R, Greisen Højlund M, Thomas Zinner N, Christiansen O. Optimizing the number of measurements for vibrational structure on quantum computers: coordinates and measurement schemes. Chem Sci 2023; 14:7733-7742. [PMID: 37476724 PMCID: PMC10355095 DOI: 10.1039/d3sc01984e] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 06/07/2023] [Indexed: 07/22/2023] Open
Abstract
One of the primary challenges prohibiting demonstrations of practical quantum advantages for near-term devices amounts to excessive measurement overheads for estimating relevant physical quantities such as ground state energies. However, with major differences between the electronic and vibrational structures of molecules, the question of how the resource requirements of computing anharmonic, vibrational states can be reduced remains relatively unexplored compared to its electronic counterpart. Importantly, bosonic commutation relations, distinguishable Hilbert spaces and vibrational coordinates allow manipulations of the vibrational system that can be exploited to minimize resource requirements. In this work, we investigate the impact of different coordinate systems and measurement schemes on the number of measurements needed to estimate anharmonic, vibrational states for a variety of three-mode (six-mode) molecules. We demonstrate an average of 3-fold (1.5-fold), with up to 7-fold (2.5-fold), reduction in the number of measurements required by employing appropriate coordinate transformations, based on an automized construction of qubit Hamiltonians from a conventional vibrational structure program.
Collapse
Affiliation(s)
- Marco Majland
- Kvantify Aps DK-2300 Copenhagen S Denmark
- Department of Physics and Astronomy, Aarhus University DK-8000 Aarhus C Denmark
- Department of Chemistry, Aarhus University DK-8000 Aarhus C Denmark
| | - Rasmus Berg Jensen
- Department of Physics and Astronomy, Aarhus University DK-8000 Aarhus C Denmark
- Department of Chemistry, Aarhus University DK-8000 Aarhus C Denmark
| | | | - Nikolaj Thomas Zinner
- Kvantify Aps DK-2300 Copenhagen S Denmark
- Department of Physics and Astronomy, Aarhus University DK-8000 Aarhus C Denmark
| | - Ove Christiansen
- Kvantify Aps DK-2300 Copenhagen S Denmark
- Department of Chemistry, Aarhus University DK-8000 Aarhus C Denmark
| |
Collapse
|
47
|
Li W, Allcock J, Cheng L, Zhang SX, Chen YQ, Mailoa JP, Shuai Z, Zhang S. TenCirChem: An Efficient Quantum Computational Chemistry Package for the NISQ Era. J Chem Theory Comput 2023. [PMID: 37317520 DOI: 10.1021/acs.jctc.3c00319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
TenCirChem is an open-source Python library for simulating variational quantum algorithms for quantum computational chemistry. TenCirChem shows high-performance in the simulation of unitary coupled-cluster circuits, using compact representations of quantum states and excitation operators. Additionally, TenCirChem supports noisy circuit simulation and provides algorithms for variational quantum dynamics. TenCirChem's capabilities are demonstrated through various examples, such as the calculation of the potential energy curve of H2O with a 6-31G(d) basis set using a 34-qubit quantum circuit, the examination of the impact of quantum gate errors on the variational energy of the H2 molecule, and the exploration of the Marcus inverted region for charge transfer rate based on variational quantum dynamics. Furthermore, TenCirChem is capable of running real quantum hardware experiments, making it a versatile tool for both simulation and experimentation in the field of quantum computational chemistry.
Collapse
Affiliation(s)
- Weitang Li
- Tencent Quantum Lab, Shenzhen 518057, China
| | | | | | | | | | | | - Zhigang Shuai
- Department of Chemistry, Tsinghua University, Beijing, 100084, China
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen 518172, China
| | | |
Collapse
|
48
|
Choi S, Izmaylov AF. Measurement Optimization Techniques for Excited Electronic States in Near-Term Quantum Computing Algorithms. J Chem Theory Comput 2023. [PMID: 37224265 DOI: 10.1021/acs.jctc.3c00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The variational quantum eigensolver (VQE) remains one of the most popular near-term quantum algorithms for solving the electronic structure problem. Yet, for its practicality, the main challenge to overcome is improving the quantum measurement efficiency. Numerous quantum measurement techniques have been developed recently, but it is unclear how these state-of-the-art measurement techniques will perform in extensions of VQE for obtaining excited electronic states. Assessing the measurement techniques' performance in the excited state VQE is crucial because the measurement requirements in these extensions are typically much greater than in the ground state VQE, as one must measure the expectation value of multiple observables in addition to that of the electronic Hamiltonian. Here, we adapt various measurement techniques to two widely used excited state VQE algorithms: multistate contraction and quantum subspace expansion. Then, the measurement requirements of each measurement technique are numerically compared. We find that the best methods for multistate contraction are ones utilizing Hamiltonian data and wave function information to minimize the number of measurements. In contrast, randomized measurement techniques are more appropriate for quantum subspace expansion, with many more observables of vastly different energy scales to measure. Nevertheless, when the best possible measurement technique for each excited state VQE algorithm is considered, significantly fewer measurements are required in multistate contraction than in quantum subspace expansion.
Collapse
Affiliation(s)
- Seonghoon Choi
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| | - Artur F Izmaylov
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, Ontario M1C 1A4, Canada
- Chemical Physics Theory Group, Department of Chemistry, University of Toronto, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
49
|
Mehendale SG, Peng B, Govind N, Alexeev Y. Exploring Parameter Redundancy in the Unitary Coupled-Cluster Ansätze for Hybrid Variational Quantum Computing. J Phys Chem A 2023; 127:4526-4537. [PMID: 37193645 DOI: 10.1021/acs.jpca.3c00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
One of the commonly used chemically inspired approaches in variational quantum computing is the unitary coupled-cluster (UCC) ansätze. Despite being a systematic way of approaching the exact limit, the number of parameters in the standard UCC ansätze exhibits unfavorable scaling with respect to the system size, hindering its practical use on near-term quantum devices. Efforts have been taken to propose some variants of the UCC ansätze with better scaling. In this paper, we explore the parameter redundancy in the preparation of unitary coupled-cluster singles and doubles (UCCSD) ansätze employing spin-adapted formulation, small amplitude filtration, and entropy-based orbital selection approaches. Numerical results of using our approach on some small molecules have exhibited a significant cost reduction in the number of parameters to be optimized and in the time to convergence compared with conventional UCCSD-VQE simulations. We also discuss the potential application of some machine learning techniques in further exploring the parameter redundancy, providing a possible direction for future studies.
Collapse
Affiliation(s)
- Shashank G Mehendale
- Indian Institute of Science Education and Research (IISER), Kolkata, West Bengal 741246, India
| | - Bo Peng
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Niranjan Govind
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99354, United States
| | - Yuri Alexeev
- Computational Science Division, Argonne National Laboratory, Lemont, Illinois 60439, United States
| |
Collapse
|
50
|
Khamoshi A, Dutta R, Scuseria GE. State Preparation of Antisymmetrized Geminal Power on a Quantum Computer without Number Projection. J Phys Chem A 2023; 127:4005-4014. [PMID: 37129503 DOI: 10.1021/acs.jpca.3c00525] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The antisymmetrized geminal power (AGP) is equivalent to the number projected Bardeen-Cooper-Schrieffer (PBCS) wave function. It is also an elementary symmetric polynomial (ESP) state. We generalize previous research on deterministically implementing the Dicke state to a state preparation algorithm for an ESP state, or equivalently AGP, on a quantum computer. Our method is deterministic and has polynomial cost, and it does not rely on number symmetry breaking and restoration. We also show that our circuit is equivalent to a disentangled unitary paired coupled cluster operator and a layer of unitary Jastrow operator acting on a single Slater determinant. The method presented herein highlights the ability of disentangled unitary coupled cluster to capture nontrivial entanglement properties that are hardly accessible with traditional Hartree-Fock based electronic structure methods.
Collapse
Affiliation(s)
- Armin Khamoshi
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
| | - Rishab Dutta
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Gustavo E Scuseria
- Department of Physics and Astronomy, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|