1
|
Zhai Z, Li C, Wang T, Yu H, Li M, Li C. Electromagnetically Heating and Oscillating Liquid Metal for Catalyzing Polyester Depolymerization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2502011. [PMID: 40095262 DOI: 10.1002/adma.202502011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/25/2025] [Indexed: 03/19/2025]
Abstract
Depolymerization and recycling of polyesters have shown great significance to economy, ecology, carbon neutrality and human health. Efficient catalysts for thermolysis depolymerization have long been pursued to achieve rapid depolymerization, high selectivity, and low energy consumption. In this study, it is found that liquid metal (LM) can serve as the efficient self-heater, mechanic disturber and catalyst for thermolysis depolymerization of polyesters under alternating electromagnetic fields. When dissolving different metals (e.g., Sn, Zn, Al, and Mg) into gallium, LMs may provide dynamic interactions between the catalyst and reactants, spontaneous metal enriching, and oxidation within the LM surface layer. Without any conventional heaters and mechanic shakers, polycaprolactone is catalytically depolymerized into ɛ-caprolactone at the rate of ≈700 mg h-1 mL-1 with the selectivity of 95.5%. The high surface tension and high mobility of LM also enable continuous depolymerization at an appropriate feeding speed of polyesters (including polyethylene terephthalate, polyhydroxybutyrate and polylactic acid). Thus, this study may offer an unprecedented "all-in-one" platform of liquid metal for continuous thermolysis depolymerization of polyesters, while without any requirement of external heater, mixer, and catalysts.
Collapse
Affiliation(s)
- Zhuanzhuan Zhai
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Songling Road 189, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Songling Road 189, Qingdao, 266101, P. R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, P. R. China
| | - Chao Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
- Institute of Materials for Energy and Environment, College of Materials Science and Engineering, Qingdao University, Ningxia Road 308, Qingdao, 266071, P. R. China
| | - Ting Wang
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Songling Road 189, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Songling Road 189, Qingdao, 266101, P. R. China
| | - Hongwei Yu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, College of Materials Science and Engineering, Qingdao University, Ningxia Road 308, Qingdao, 266071, P. R. China
| | - Mingjie Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Songling Road 189, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Songling Road 189, Qingdao, 266101, P. R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, P. R. China
| | - Chaoxu Li
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Songling Road 189, Qingdao, 266101, P. R. China
- Shandong Energy Institute, Songling Road 189, Qingdao, 266101, P. R. China
- Qingdao New Energy Shandong Laboratory, Songling Road 189, Qingdao, 266101, P. R. China
- Center of Material and Optoelectronics Engineering, University of Chinese Academy of Sciences, Yuquan Road 19A, Beijing, 100049, P. R. China
| |
Collapse
|
2
|
Tang T, Li Z, Zhou L, Zhang P, Cheng YF, Liang Y, Zhuang JH, Hu XY, Ma QJ, Zhang BY, Jannat A, Ou JZ. Tunable Synthesis of 2D Bismuth Oxyhydroxide and Oxysulfide from Solid-Liquid Interfacial Reaction for High Performance Optoelectronic Gas Sensing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411522. [PMID: 40059510 PMCID: PMC12036554 DOI: 10.1002/smll.202411522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/01/2025] [Indexed: 04/29/2025]
Abstract
The self-limiting Cabrera-Mott oxidation reaction on metal surfaces provides an effective pathway for synthesizing atomically thin 2D metal oxide. Inspired by this reaction, it is proposed that solid bismuth metals can react with dissolved oxygen and water molecules in an aqueous environment, forming an ultrathin oxyhydroxide layer on their surfaces. The lattice mismatch between the surface oxyhydroxide layer and the underlying pure metal enables the mechanical exfoliation of detached 2D oxyhydroxide nanosheets. Moreover, the sulfurization interaction between the oxyhydroxide and dissolved H2S expands the applicability of solid-liquid interfacial reactions for realizing 2D bismuth oxysulfide, effectively tuning their electronic bandgap energy, work function, and band position. Given its good photoresponse from blue to UV light, the optoelectronic gas sensing performances of bismuth oxysulfide are investigated. Under purple light irradiation, the Bi2O1.12S1.88-based gas sensor exhibits an excellent optoelectronic response factor of 48.5% toward 10 ppb NO2, which is the lowest detection limit for reported bismuth compounds-based gas sensor so far. This work provides a novel and facile synthesis approach for 2D metal oxyhydroxide and oxysulfide and simultaneously demonstrates the substantial potential of bismuth oxysulfide in high-performance optoelectronic gas sensing.
Collapse
Affiliation(s)
- Tao Tang
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Zhong Li
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
- Jiangsu Key Laboratory of Advanced Structural Materials and Application TechnologyNanjing Institute of TechnologyNanjing211167China
| | - Li Zhou
- Research Institute of Natural Gas TechnologyPetro China Southwest Oil and Gas field CompanyChengdu610213China
| | - Pu Zhang
- Research Institute of Natural Gas TechnologyPetro China Southwest Oil and Gas field CompanyChengdu610213China
| | - Yin Fen Cheng
- Institute of Advanced StudyChengdu UniversityChengdu610106China
| | - Yi Liang
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Jing Hao Zhuang
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Xin Yi Hu
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Qi Jie Ma
- School of EngineeringRMIT UniversityMelbourneVictoria3000Australia
| | - Bao Yue Zhang
- School of EngineeringRMIT UniversityMelbourneVictoria3000Australia
| | - Azmira Jannat
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
- School of EngineeringRMIT UniversityMelbourneVictoria3000Australia
| | - Jian Zhen Ou
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
- School of EngineeringRMIT UniversityMelbourneVictoria3000Australia
| |
Collapse
|
3
|
Li W, Zhu L, Xu Y, Wang G, Xu T, Si C. Lignocellulose-Mediated Functionalization of Liquid Metals toward the Frontiers of Multifunctional Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2415761. [PMID: 39573839 DOI: 10.1002/adma.202415761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/10/2024] [Indexed: 03/27/2025]
Abstract
Lignocellulose-mediated liquid metal (LM) composites, as emerging functional materials, show tremendous potential for a variety of applications. The abundant hydroxyl, carboxyl, and other polar groups in lignocellulose facilitate the formation of strong chemical bonds with LM surfaces, enhancing wettability and adhesion for improved interface compatibility. Beyond serving as a supportive matrix, lignocellulose can be tailored to optimize the microstructure of the composites, adapting them for diverse applications. This review comprehensively summarizes the fundamental principles and recent advancements in lignocellulose-mediated LM composites, highlighting the advantages of lignocellulose in composite fabrication, including facile synthesis, versatile interactions, and inherent functionalities. Key modulation strategies for LMs and innovative synthesis methods for functionalized lignocellulose composites are discussed. Furthermore, the roles and structure-performance relationships of these composites in electromagnetic shielding, flexible sensors, and energy storage devices are systematically summarized. Finally, the obstacles and prospective advancements pertaining to lignocellulose-mediated LM composites are thoroughly scrutinized and deliberated upon. This review is expected to provide basic guidance for researchers to boost the popularity of LMs in diverse applications and provide useful references for design strategies of state-of-the-art LMs.
Collapse
Affiliation(s)
- Wei Li
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Liyu Zhu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Ying Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Guanhua Wang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Ting Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, College of Light Industry Science and Technology, Tianjin University of Science and Technology, Tianjin, 300457, P. R. China
| |
Collapse
|
4
|
Bai Y, Xu Y, Sun L, Ward Z, Wang H, Ratnayake G, Wang C, Zhao M, He H, Gao J, Wu M, Lu S, Bepete G, Peng D, Liu B, Kang F, Terrones H, Terrones M, Lei Y. Two-dimensional Nanosheets by Liquid Metal Exfoliation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416375. [PMID: 39707650 DOI: 10.1002/adma.202416375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/04/2024] [Indexed: 12/23/2024]
Abstract
Liquid exfoliation is a scalable and effective method for synthesizing 2D nanosheets (NSs) but often induces contamination and defects. Here, liquid metal gallium (Ga) is used to exfoliate bulk layered materials into 2D NSs at near room temperature, utilizing the liquid surface tension and Ga intercalation to disrupt Van der Waals (vdW) forces. In addition, the process can transform the 2H-phase of transition metal dichalcogenides into the 1T'-phase under ambient conditions. This method produces high aspect ratio, surfactant-free 2D-NSs for more than 10 types of 2D materials that include h-BN, graphene, MoTe2, MoSe2, layered minerals, etc. The subsequent Ga separation via ethanol dispersion avoids the formation of additional defects and surfactant contamination. By adjusting initial defect levels of the layered materials, customize the metallicity and/or defectiveness of 2D NSs can be customized for applications such as birefringence-tunable modulators with exfoliated h-BN, and enhanced hydrogen evolution with defective MoS2. This approach offers a strategy to optimize liquid metal/2D interfaces, preserving intrinsic properties and enabling practical applications, potentially transforming optics, energy conversion, and beyond.
Collapse
Affiliation(s)
- Yichao Bai
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Youan Xu
- Xi'an Research institute of High Technology, Xi'an, 710025, P. R. China
| | - Linxuan Sun
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Zack Ward
- Department of Physics and Astronomy, Rensselaer Polytechnic Institute, Rensselaer, NY, 12180, USA
| | - Hongzhang Wang
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Gothamie Ratnayake
- Department of Physics, Department of Chemistry, Department of Materials Science and Engineering, Center for 2D and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Cong Wang
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Mingchuang Zhao
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Haoqi He
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Jianxiang Gao
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Menghan Wu
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Sirong Lu
- Southern University of Science and Technology, Shenzhen, 518055, China
| | - George Bepete
- Department of Chemical and Materials Engineering, Department of Physics, and Centre for Nano Science Research (CeNSR), Concordia University, Montreal, H4B1R6, Canada
| | - Deli Peng
- Institute of Superlubricity Technology, Research Institute of Tsinghua University in Shenzhen, Shenzhen, 518057, China
| | - Bilu Liu
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Feiyu Kang
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
- Shenzhen Geim Graphene Center, Tsinghua-Berkeley Shenzhen Institute and Institute of Materials Research, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| | - Humberto Terrones
- Department of Physics and Astronomy, Rensselaer Polytechnic Institute, Rensselaer, NY, 12180, USA
| | - Mauricio Terrones
- Department of Physics, Department of Chemistry, Department of Materials Science and Engineering, Center for 2D and Layered Materials, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yu Lei
- Institute of Materials Research, Center of Double Helix, Guangdong Provincial Key Laboratory of Thermal Management Engineering and Materials, Shenzhen Key Laboratory of Advanced Layered Materials for Value-added Applications, Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, P. R. China
| |
Collapse
|
5
|
Zhexembekova A, Lim S, Lee C, Kim YT, Lee CY. A Liquid Metal Balloon for the Exfoliation of an Ultrathin and Uniform Gallium Oxide Layer. Molecules 2024; 29:5894. [PMID: 39769983 PMCID: PMC11677224 DOI: 10.3390/molecules29245894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/02/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
We report the exfoliation of ultrathin gallium oxide (Ga2O3) films from liquid metal balloons, formed by injecting air into droplets of eutectic gallium-indium alloy (eGaIn). These Ga2O3 films enable the selective adsorption of carbon nanotubes (CNTs) dispersed in water, resulting in the formation of a dense, percolating CNT network on their surface. The self-assembled CNT network on Ga2O3 provides a versatile platform for device fabrication. As an example application, we fabricated a chemiresistive gas sensor for detecting simulants of chemical warfare agents (CWAs), including diisopropyl methylphosphonate (DIMP), dimethyl methylphosphonate (DMMP), and triethyl phosphate (TEP). The sensor exhibited reversible responses, high sensitivity, and low limits of detection (13 ppb for DIMP, 28 ppb for DMMP, and 53 ppb for TEP). These findings highlight the potential of Ga2O3 films derived from liquid metal balloons for integrating CNTs into functional electronic devices.
Collapse
Affiliation(s)
- Anar Zhexembekova
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
| | - Seongyeop Lim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
| | - Cheongha Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
| | - Yun-Tae Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
| | - Chang Young Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea; (A.Z.); (S.L.); (C.L.); (Y.-T.K.)
- Graduate School of Carbon Neutrality, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| |
Collapse
|
6
|
Wu R, Zhang H, Ma H, Zhao B, Li W, Chen Y, Liu J, Liang J, Qin Q, Qi W, Chen L, Li J, Li B, Duan X. Synthesis, Modulation, and Application of Two-Dimensional TMD Heterostructures. Chem Rev 2024; 124:10112-10191. [PMID: 39189449 DOI: 10.1021/acs.chemrev.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Two-dimensional (2D) transition metal dichalcogenide (TMD) heterostructures have attracted a lot of attention due to their rich material diversity and stack geometry, precise controllability of structure and properties, and potential practical applications. These heterostructures not only overcome the inherent limitations of individual materials but also enable the realization of new properties through appropriate combinations, establishing a platform to explore new physical and chemical properties at micro-nano-pico scales. In this review, we systematically summarize the latest research progress in the synthesis, modulation, and application of 2D TMD heterostructures. We first introduce the latest techniques for fabricating 2D TMD heterostructures, examining the rationale, mechanisms, advantages, and disadvantages of each strategy. Furthermore, we emphasize the importance of characteristic modulation in 2D TMD heterostructures and discuss some approaches to achieve novel functionalities. Then, we summarize the representative applications of 2D TMD heterostructures. Finally, we highlight the challenges and future perspectives in the synthesis and device fabrication of 2D TMD heterostructures and provide some feasible solutions.
Collapse
Affiliation(s)
- Ruixia Wu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hongmei Zhang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Huifang Ma
- Innovation Center for Gallium Oxide Semiconductor (IC-GAO), National and Local Joint Engineering Laboratory for RF Integration and Micro-Assembly Technologies, College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
- School of Flexible Electronics (Future Technologies) Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing 211816, China
| | - Bei Zhao
- School of Physics and Key Laboratory of Quantum Materials and Devices of Ministry of Education, Southeast University, Nanjing 211189, China
| | - Wei Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jianteng Liu
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Jingyi Liang
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qiuyin Qin
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Weixu Qi
- Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, School of Physics and Electronics, Hunan University, Changsha 410082, China
| | - Liang Chen
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Jia Li
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Bo Li
- Changsha Semiconductor Technology and Application Innovation Research Institute, School of Physics and Electronics, College of Semiconductors (College of Integrated Circuits), Hunan University, Changsha 410082, China
| | - Xidong Duan
- Hunan Provincial Key Laboratory of Two-Dimensional Materials, State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
7
|
Guo J, Zhi X, Wang D, Qu L, Zavabeti A, Fan Q, Zhang Y, Butson JD, Yang J, Wu C, Liu JZ, Hu G, Fan X, Li GK. Surface-Enriched Room-Temperature Liquid Bismuth for Catalytic CO 2 Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401777. [PMID: 38747025 DOI: 10.1002/smll.202401777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/20/2024] [Indexed: 10/01/2024]
Abstract
Bismuth-based electrocatalysts are effective for carbon dioxide (CO2) reduction to formate. However, at room temperature, these materials are only available in solid state, which inevitably suffers from surface deactivation, declining current densities, and Faradaic efficiencies. Here, the formation of a liquid bismuth catalyst on the liquid gallium surface at ambient conditions is shown as its exceptional performance in the electrochemical reduction of CO2 (i.e., CO2RR). By doping a trace amount of bismuth (740 ppm atomic) in gallium liquid metal, a surface enrichment of bismuth by over 400 times (30 at%) in liquid state is obtained without atomic aggregation, achieving 98% Faradic efficiency for CO2 conversion to formate over 80 h. Ab initio molecular simulations and density functional theory calculations reveal that bismuth atoms in the liquid state are the most energetically favorable sites for the CO2RR intermediates, superior to solid Bi-sites, as well as joint GaBi-sites. This study opens an avenue for fabricating high-performing liquid-state metallic catalysts that cannot be reached by elementary metals under electrocatalytic conditions.
Collapse
Affiliation(s)
- Jining Guo
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK
| | - Xing Zhi
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Dingqi Wang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Longbing Qu
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Qining Fan
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Yuecheng Zhang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Joshua D Butson
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jianing Yang
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Chao Wu
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Guoping Hu
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
- Ganjiang Innovation Academy, Chinese Academy of Sciences, Ganzhou, Jiangxi, 341119, China
| | - Xiaolei Fan
- Department of Chemical Engineering, School of Engineering, The University of Manchester, Manchester, M13 9PL, UK
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, 211 Xingguang Road, Ningbo, 315100, China
- Institute of Wenzhou, Zhejiang University, Fengnan Road, Wenzhou, 325006, China
| | - Gang Kevin Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
8
|
Wei X, Nguyen CK, Taylor PD, Krishnamurthi V, Syed N, Le PY, Spencer MJS, Daeneke T, Bao L. Surface chemistry altering electronic behaviour of liquid metal-derived tin oxide nanosheets. NANOSCALE 2024; 16:13551-13561. [PMID: 38949653 DOI: 10.1039/d4nr01841a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Possessing excellent electronic properties and high chemical stability, semiconducting n-type two-dimensional (2D) tin dioxide (SnO2) nanosheets have been featured in sensing and electrocatalysis applications recently. Derived from non-layered crystal structures, 2D SnO2 has abundant unsaturated dangling bonds existing at the surface, providing interfacial activity. How the surface chemistry alters the electronic properties of 2D SnO2 nanomaterials remains unexplored. In this study, we synthesised ultra-thin 2D SnO2 nanosheets using a liquid metal (LM) touch printing technique and investigated experimentally and theoretically how the interactions of organic solvents composed of alkyl and hydroxyl groups with the surface of LM-derived 2D SnO2 modulate the electronic properties. It was found that alkane solvents can physically absorb onto the SnO2 surface with no impact on the material conductivity. Alcohol-based solvents on the other hand interact with the SnO2 surface via chemical absorptions primarily, in which oxygen atoms of hydroxyl groups in the alcohols form bonds with the surface atoms of SnO2. The binding stability is determined by the length and configuration of the hydrocarbon chain in alcohols. As representative long-chain alcohols, 1-octanol and 1-pentanol attach onto the SnO2 surface strongly, lowering the binding energy of Sn4+ and reducing the electron transfer ability of SnO2 nanosheets. Consequently, the electronic properties, i.e. conductivity and electronic mobility of SnO2 nanosheet-based electronic devices are decreased significantly.
Collapse
Affiliation(s)
- Xiaotian Wei
- School of Engineering, RMIT University, Australia.
| | | | | | | | - Nitu Syed
- School of Engineering, RMIT University, Australia.
- ARC Centre of Excellence for Transformative meta-Optical Systems, The University of Melbourne, Australia
| | - Phuong Y Le
- School of Science, RMIT University, Australia
| | - Michelle J S Spencer
- ARC Centre of Excellence in Future Low-Energy Electronics Technologies, School of Science, RMIT University, Australia
| | | | - Lei Bao
- School of Engineering, RMIT University, Australia.
| |
Collapse
|
9
|
Kong L, Li W, Zhang T, Ma H, Cao Y, Wang K, Zhou Y, Shamim A, Zheng L, Wang X, Huang W. Wireless Technologies in Flexible and Wearable Sensing: From Materials Design, System Integration to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2400333. [PMID: 38652082 DOI: 10.1002/adma.202400333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 04/07/2024] [Indexed: 04/25/2024]
Abstract
Wireless and wearable sensors attract considerable interest in personalized healthcare by providing a unique approach for remote, noncontact, and continuous monitoring of various health-related signals without interference with daily life. Recent advances in wireless technologies and wearable sensors have promoted practical applications due to their significantly improved characteristics, such as reduction in size and thickness, enhancement in flexibility and stretchability, and improved conformability to the human body. Currently, most researches focus on active materials and structural designs for wearable sensors, with just a few exceptions reflecting on the technologies for wireless data transmission. This review provides a comprehensive overview of the state-of-the-art wireless technologies and related studies on empowering wearable sensors. The emerging functional nanomaterials utilized for designing unique wireless modules are highlighted, which include metals, carbons, and MXenes. Additionally, the review outlines the system-level integration of wireless modules with flexible sensors, spanning from novel design strategies for enhanced conformability to efficient transmitting data wirelessly. Furthermore, the review introduces representative applications for remote and noninvasive monitoring of physiological signals through on-skin and implantable wireless flexible sensing systems. Finally, the challenges, perspectives, and unprecedented opportunities for wireless and wearable sensors are discussed.
Collapse
Affiliation(s)
- Lingyan Kong
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Weiwei Li
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Tinghao Zhang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Huihui Ma
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yunqiang Cao
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Kexin Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Yilin Zhou
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Atif Shamim
- IMPACT Lab, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Lu Zheng
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Xuewen Wang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics (FSCFE) and Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- Shaanxi Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, China
- State Key Laboratory of Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
- Key Laboratory of Flexible Electronics(KLoFE)and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211800, China
| |
Collapse
|
10
|
Li L, Zhang Q, Geng D, Meng H, Hu W. Atomic engineering of two-dimensional materials via liquid metals. Chem Soc Rev 2024; 53:7158-7201. [PMID: 38847021 DOI: 10.1039/d4cs00295d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Two-dimensional (2D) materials, known for their distinctive electronic, mechanical, and thermal properties, have attracted considerable attention. The precise atomic-scale synthesis of 2D materials opens up new frontiers in nanotechnology, presenting novel opportunities for material design and property control but remains challenging due to the high expense of single-crystal solid metal catalysts. Liquid metals, with their fluidity, ductility, dynamic surface, and isotropy, have significantly enhanced the catalytic processes crucial for synthesizing 2D materials, including decomposition, diffusion, and nucleation, thus presenting an unprecedented precise control over material structures and properties. Besides, the emergence of liquid alloy makes the creation of diverse heterostructures possible, offering a new dimension for atomic engineering. Significant achievements have been made in this field encompassing defect-free preparation, large-area self-aligned array, phase engineering, heterostructures, etc. This review systematically summarizes these contributions from the aspects of fundamental synthesis methods, liquid catalyst selection, resulting 2D materials, and atomic engineering. Moreover, the review sheds light on the outlook and challenges in this evolving field, providing a valuable resource for deeply understanding this field. The emergence of liquid metals has undoubtedly revolutionized the traditional nanotechnology for preparing 2D materials on solid metal catalysts, offering flexible possibilities for the advancement of next-generation electronics.
Collapse
Affiliation(s)
- Lin Li
- College of Chemistry, Tianjin Normal University, Tianjin 300387, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Qing Zhang
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- School of Advanced Materials, Peking University Shenzhen Graduate School, Peking University, Shenzhen 518055, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Dechao Geng
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Hong Meng
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| | - Wenping Hu
- Key Laboratory of Organic Integrated Circuit, Ministry of Education & Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
11
|
Krishnamurthi V, Vaillant PHA, Mata J, Nguyen CK, Parker CJ, Zuraiqi K, Bryant G, Chiang K, Russo SP, Christofferson AJ, Elbourne A, Daeneke T. Structural Evolution of Liquid Metals and Alloys. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403885. [PMID: 38739417 DOI: 10.1002/adma.202403885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/02/2024] [Indexed: 05/14/2024]
Abstract
Low-melting liquid metals are emerging as a new group of highly functional solvents due to their capability to dissolve and alloy various metals in their elemental state to form solutions as well as colloidal systems. Furthermore, these liquid metals can facilitate and catalyze multiple unique chemical reactions. Despite the intriguing science behind liquid metals and alloys, very little is known about their fundamental structures in the nanometric regime. To bridge this gap, this work employs small angle neutron scattering and molecular dynamics simulations, revealing that the most commonly used liquid metal solvents, EGaIn and Galinstan, are surprisingly structured with the formation of clusters ranging from 157 to 15.7 Å. Conversely, noneutectic liquid metal alloys of GaSn or GaIn at low solute concentrations of 1, 2, and 5 wt%, as well as pure Ga, do not exhibit these structures. Importantly, the eutectic alloys retain their structure even at elevated temperatures of 60 and 90 °C, highlighting that they are not just simple homogeneous fluids consisting of individual atoms. Understanding the complex soft structure of liquid alloys will assist in comprehending complex phenomena occurring within these fluids and contribute to deriving reaction mechanisms in the realm of synthesis and liquid metal-based catalysis.
Collapse
Affiliation(s)
- Vaishnavi Krishnamurthi
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Pierre H A Vaillant
- School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Jitendra Mata
- Australian Centre for Neutron Scattering (ACNS), Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW, 2234, Australia
- School of Chemistry, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chung Kim Nguyen
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Caiden J Parker
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Karma Zuraiqi
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Gary Bryant
- School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Ken Chiang
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Salvy P Russo
- School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Andrew J Christofferson
- School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Aaron Elbourne
- School of Science, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| | - Torben Daeneke
- School of Engineering, RMIT University, 124 La Trobe Street, Melbourne, VIC, 3001, Australia
| |
Collapse
|
12
|
Parker CJ, Zuraiqi K, Krishnamurthi V, Mayes EL, Vaillant PHA, Fatima SS, Matuszek K, Tang J, Kalantar-Zadeh K, Meftahi N, McConville CF, Elbourne A, Russo SP, Christofferson AJ, Chiang K, Daeneke T. Spontaneous Liquefaction of Solid Metal-Liquid Metal Interfaces in Colloidal Binary Alloys. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400147. [PMID: 38704677 PMCID: PMC11234468 DOI: 10.1002/advs.202400147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/03/2024] [Indexed: 05/06/2024]
Abstract
Crystallization of alloys from a molten state is a fundamental process underpinning metallurgy. Here the direct imaging of an intermetallic precipitation reaction at equilibrium in a liquid-metal environment is demonstrated. It is shown that the outer layers of a solidified intermetallic are surprisingly unstable to the depths of several nanometers, fluctuating between a crystalline and a liquid state. This effect, referred to herein as crystal interface liquefaction, is observed at remarkably low temperatures and results in highly unstable crystal interfaces at temperatures exceeding 200 K below the bulk melting point of the solid. In general, any liquefaction process would occur at or close to the formal melting point of a solid, thus differentiating the observed liquefaction phenomenon from other processes such as surface pre-melting or conventional bulk melting. Crystal interface liquefaction is observed in a variety of binary alloy systems and as such, the findings may impact the understanding of crystallization and solidification processes in metallic systems and alloys more generally.
Collapse
Affiliation(s)
- Caiden J Parker
- School of Engineering, RMIT University, Melbourne, 3001, Australia
| | - Karma Zuraiqi
- School of Engineering, RMIT University, Melbourne, 3001, Australia
| | | | - Edwin Lh Mayes
- School of Science, RMIT University, Melbourne, 3001, Australia
| | | | | | | | - Jianbo Tang
- School of Engineering, University of New South Wales (UNSW), Sydney, 2052, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, 2008, Australia
| | - Nastaran Meftahi
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, 3001, Australia
| | | | - Aaron Elbourne
- School of Science, RMIT University, Melbourne, 3001, Australia
| | - Salvy P Russo
- School of Science, RMIT University, Melbourne, 3001, Australia
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, 3001, Australia
| | - Andrew J Christofferson
- School of Science, RMIT University, Melbourne, 3001, Australia
- ARC Centre of Excellence in Exciton Science, School of Science, RMIT University, Melbourne, 3001, Australia
| | - Ken Chiang
- School of Engineering, RMIT University, Melbourne, 3001, Australia
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, 3001, Australia
| |
Collapse
|
13
|
Zhang Y, He Q, Yang H, Li Z, Jiang H, Zhang Y, Luo X, Zheng Y. Liquid-Metal-Based Spin-Coating Exfoliation for Atomically Thin Metal Oxide Synthesis. NANO LETTERS 2024; 24:6247-6254. [PMID: 38709758 DOI: 10.1021/acs.nanolett.4c00757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Two-dimensional (2D) semiconductors possess exceptional electronic, optical, and magnetic properties, making them highly desirable for widespread applications. However, conventional mechanical exfoliation and epitaxial growth methods are insufficient in meeting the demand for atomically thin films covering large areas while maintaining high quality. Herein, leveraging liquid metal oxidation reaction, we propose a motorized spin-coating exfoliation strategy to efficiently produce large-area 2D metal oxide (2DMO) semiconductors with high crystallinity, atomically thin thickness, and flat surfaces on diverse substrates. Moreover, we realized a 2D gallium oxide-based deep ultraviolet solar-blind photodetector featuring a metal-semiconductor-metal structure, showcasing high responsivity (8.24 A W-1) at 254 nm and excellent sensitivity (4.3 × 1012 cm Hz1/2 W-1). This novel liquid-metal-based spin-coating exfoliation strategy offers great potential for synthesizing atomically thin 2D semiconductors, opening new avenues for future functional electronic and optical applications.
Collapse
Affiliation(s)
- Yingyi Zhang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Qinming He
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Hui Yang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhishen Li
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - He Jiang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Yi Zhang
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Luo
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| | - Yue Zheng
- Guangdong Provincial Key Laboratory of Magnetoelectric Physics and Devices, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
- State Key Laboratory of Optoelectronic Materials and Technologies, Sun Yat-sen University, Guangzhou 510275, China
- Centre for Physical Mechanics and Biophysics, School of Physics, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
14
|
Wang M, Lin Y. Gallium-based liquid metals as reaction media for nanomaterials synthesis. NANOSCALE 2024; 16:6915-6933. [PMID: 38501969 DOI: 10.1039/d3nr06566a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Gallium-based liquid metals (LMs) and their alloys have gained prominence in the realm of flexible and stretchable electronics. Recent advances have expanded the interest to explore the electron-rich core and interface of LMs to synthesize various nanomaterials, where Ga-based LMs serve as versatile reaction media. In this paper, we delve into the latest developments within this burgeoning field. Our discussion begins by elucidating the unique attributes of LMs that render them suitable as reaction media, including their high metal solubility, low standard reduction potential, self-limiting oxidation and ultra-smooth and "layer" surface. We then provide a comprehensive categorized summary of utilizing these features to fabricate a variety of nanomaterials, including pure metallic materials (metal alloys, metal crystals, porous metals, high-entropy alloys and metallic single atoms), metal-inorganic compounds (2D metal oxides, 2D metallic inorganic compounds and 2D graphitic materials), as well as metal-organic composites (metal-organic frameworks). This paper concludes by discussing the current challenges in this field and exploring potential future directions. The versatility and unique properties of Ga-based LMs are poised to play a pivotal role in the future of nanomaterial science, paving the way for more efficient, sustainable, and innovative technological solutions.
Collapse
Affiliation(s)
- Ming Wang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, 117585, Singapore.
| | - Yiliang Lin
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
15
|
Zhang Y, Gao B, Lepage D, Tong Y, Wang P, Xia W, Niu J, Feng Y, Chen H, Qian H. Large second-order susceptibility from a quantized indium tin oxide monolayer. NATURE NANOTECHNOLOGY 2024; 19:463-470. [PMID: 38168927 DOI: 10.1038/s41565-023-01574-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 11/13/2023] [Indexed: 01/05/2024]
Abstract
Due to their high optical transparency and electrical conductivity, indium tin oxide thin films are a promising material for photonic circuit design and applications. However, their weak optical nonlinearity has been a substantial barrier to nonlinear signal processing applications. In this study, we show that an atomically thin (~1.5 nm) indium tin oxide film in the form of an air/indium tin oxide/SiO2 quantum well exhibits a second-order susceptibility χ2 of ~1,800 pm V-1. First-principles calculations and quantum electrostatic modelling point to an electronic interband transition resonance in the asymmetric potential energy of the quantum well as the reason for this large χ2 value. As the χ2 value is more than 20 times higher than that of the traditional nonlinear LiNbO3 crystal, our indium tin oxide quantum well design can be an important step towards nonlinear photonic circuit applications.
Collapse
Affiliation(s)
- Yiyun Zhang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- International Joint Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, China
| | - Bingtao Gao
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- International Joint Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, China
| | - Dominic Lepage
- Institut Quantique, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Yuanbiao Tong
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Pan Wang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Wendi Xia
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- International Joint Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, China
| | - Junru Niu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- International Joint Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, China
| | - Yiming Feng
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China
- International Joint Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, China
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, China
| | - Hongsheng Chen
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
- International Joint Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, China.
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, China.
| | - Haoliang Qian
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Extreme Photonics and Instrumentation, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, China.
- International Joint Innovation Center, Key Laboratory of Advanced Micro/Nano Electronic Devices and Smart Systems of Zhejiang, Electromagnetics Academy at Zhejiang University, Zhejiang University, Haining, China.
- Jinhua Institute of Zhejiang University, Zhejiang University, Jinhua, China.
| |
Collapse
|
16
|
Lu G, Ni E, Jiang Y, Wu W, Li H. Room-Temperature Liquid Metals for Flexible Electronic Devices. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304147. [PMID: 37875665 DOI: 10.1002/smll.202304147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 07/26/2023] [Indexed: 10/26/2023]
Abstract
Room-temperature gallium-based liquid metals (RT-GaLMs) have garnered significant interest recently owing to their extraordinary combination of fluidity, conductivity, stretchability, self-healing performance, and biocompatibility. They are ideal materials for the manufacture of flexible electronics. By changing the composition and oxidation of RT-GaLMs, physicochemical characteristics of the liquid metal can be adjusted, especially the regulation of rheological, wetting, and adhesion properties. This review highlights the advancements in the liquid metals used in flexible electronics. Meanwhile related characteristics of RT-GaLMs and underlying principles governing their processing and applications for flexible electronics are elucidated. Finally, the diverse applications of RT-GaLMs in self-healing circuits, flexible sensors, energy harvesting devices, and epidermal electronics, are explored. Additionally, the challenges hindering the progress of RT-GaLMs are discussed, while proposing future research directions and potential applications in this emerging field. By presenting a concise and critical analysis, this paper contributes to the advancement of RT-GaLMs as an advanced material applicable for the new generation of flexible electronics.
Collapse
Affiliation(s)
- Guixuan Lu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Erli Ni
- The Institute for Advanced Studies of Wuhan University, Wuhan University, Wuhan, Hubei, 430072, China
| | - Yanyan Jiang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Weikang Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| | - Hui Li
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, China
| |
Collapse
|
17
|
Maiti S, Senavirathna LN, Minguez Bacho I, Menath J, Gruber W, Vogel N, Bachmann J, Unruh T. Highly Ordered Monolayers of μm-Sized Polystyrene Spheres Studied by Grazing-Incidence Small-Angle X-ray Scattering, Simulations, and Geometrical Calculations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1185-1194. [PMID: 38166415 DOI: 10.1021/acs.langmuir.3c02219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Unraveling the two-dimensional (2D) structural ordering of colloidal particles assembled at a flat surface is essential for understanding and optimizing their physical properties. So far, grazing-incidence small-angle X-ray scattering (GISAXS) has been widely used to determine crystallographic information on 2D self-assembled structures of nanosize objects. However, solving the structure of 2D lattices consisting of micrometer (μm)-sized objects still remains a challenge using scattering methods. Here, a model 2D SCALMS (supported catalytically active liquid metal solution) template is fabricated from μm-sized polystyrene (PS) spheres that form a monolayer on top of the flat solid support. GISAXS patterns of the sample were collected for rotation angles around its surface normal in steps of 3°. For every rotation angle, different Bragg-type interference maxima along the out-of-plane (qz) direction were observed. On the basis of simulations of GISXAS patterns of single domains of ordered particle arrangements using the distorted wave Born approximation (DWBA) and validation against a simple geometrical scattering model, the interference maxima could nicely be interpreted to originate from a monolayer of the μm-sized spherical particles which are arranged in domains of hexagonal 2D paracrystalline order. This novel GISAXS evaluation technique serves as a proof of principle for determining the μm-size periodicity of 2D crystalline domains and demonstrates its potential to spatially resolve the relative orientations of such domains with respect to a reference direction.
Collapse
Affiliation(s)
- S Maiti
- Institute for Crystallography and Structural Physics, Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudstr. 3, 91058 Erlangen, Germany
| | - L N Senavirathna
- Institute for Crystallography and Structural Physics, Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudstr. 3, 91058 Erlangen, Germany
| | - I Minguez Bacho
- Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, Cauerstr. 3, 91058 Erlangen, Germany
| | - J Menath
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - W Gruber
- Institute for Crystallography and Structural Physics, Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudstr. 3, 91058 Erlangen, Germany
| | - N Vogel
- Institute of Particle Technology, Department of Chemical and Biological Engineering, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 4, 91058 Erlangen, Germany
| | - J Bachmann
- Chemistry of Thin Film Materials, Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, IZNF, Cauerstr. 3, 91058 Erlangen, Germany
| | - T Unruh
- Institute for Crystallography and Structural Physics, Department of Physics, Friedrich-Alexander-Universität Erlangen-Nürnberg, Staudstr. 3, 91058 Erlangen, Germany
| |
Collapse
|
18
|
Zheng J, Solomon MB, Rawal A, Chi Y, Yu R, Liu L, Tang J, Mao G, D'Alessandro DM, Kumar PV, Rahim MA, Kalantar-Zadeh K. Passivation-Free, Liquid-Metal-Based Electrosynthesis of Aluminum Metal-Organic Frameworks Mediated by Light Metal Activation. ACS NANO 2023; 17:25532-25541. [PMID: 38054450 DOI: 10.1021/acsnano.3c09472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
The production of aluminum (Al) metal-organic frameworks (MOFs) by electrosynthesis using solid-state Al electrodes always faces significant challenges due to the formation of a passivating aluminum oxide layer in the process. Here, we developed a liquid-metal-based method to electrosynthesize an aluminum Al-MOF (MIL-53). This method uses a liquid-state gallium (Ga) anode as a reservoir and activator for a light metal, Al, in the form of Al-Ga alloys that releases Al3+ for the electrosynthesis of Al-MOFs. Introducing Ga into the system inhibits the formation of aluminum oxide passivation layer and promotes the electrochemical reaction for Al-MOF synthesis. The electrosynthesis using liquid Al-Ga alloy is conducted at ambient temperatures for long durations without requiring pretreatment for aluminum oxide removal. We show that the Al-MOF products synthesized from 0.40 wt % Al in liquid Ga lead to the highest crystallinity and possess a specific surface area greater than 800 m2 g-1 and a low capacity for CO2 adsorption that can be used as a potential matrix for CO2/N2 separation. This work provides evidence that employing liquid-metal electrodes offers a viable pathway to circumvent surface passivation effects that inevitably occur when using conventional solid metals. It also introduces an efficient electrosynthesis method based on liquid metals for producing atomically porous materials.
Collapse
Affiliation(s)
- Jiewei Zheng
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Marcello B Solomon
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Aditya Rawal
- Mark Wainwright Analytical Centre, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Yuan Chi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Ruohan Yu
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Li Liu
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Deanna M D'Alessandro
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
- School of Chemistry, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Priyank V Kumar
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Md Arifur Rahim
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|
19
|
Wang D, Ye J, Bai Y, Yang F, Zhang J, Rao W, Liu J. Liquid Metal Combinatorics toward Materials Discovery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303533. [PMID: 37417920 DOI: 10.1002/adma.202303533] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 07/03/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Liquid metals and their derivatives provide several opportunities for fundamental and practical exploration worldwide. However, the increasing number of studies and shortage of desirable materials to fulfill different needs also pose serious challenges. Herein, to address this issue, a generalized theoretical frame that is termed as "Liquid Metal Combinatorics" (LMC) is systematically presented, and summarizes promising candidate technical routes toward new generation material discovery. The major categories of LMC are defined, and eight representative methods for manufacturing advanced materials are outlined. It is illustrated that abundant targeted materials can be efficiently designed and fabricated via LMC through deep physical combinations, chemical reactions, or both among the main bodies of liquid metals, surface chemicals, precipitated ions, and other materials. This represents a large class of powerful, reliable, and modular methods for innovating general materials. The achieved combinatorial materials not only maintained the typical characteristics of liquid metals but also displayed distinct tenability. Furthermore, the fabrication strategies, wide extensibility, and pivotal applications of LMC are classified. Finally, by interpreting the developmental trends in the area, a perspective on the LMC is provided, which warrants its promising future for society.
Collapse
Affiliation(s)
- Dawei Wang
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China
| | - Jiao Ye
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunlong Bai
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Yang
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jie Zhang
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Rao
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Liu
- Liquid Metal and Cryogenic Biomedical Research Center, Beijing Key Lab of CryoBiomedical Engineering and Key Lab of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
- Department of Biomedical Engineering, School of Medicine, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
20
|
Abstract
Catalysts serve pivotal roles in facilitating the development of sustainable energy systems on a global scale. Liquid metal usually refers to metal that is liquid below 330 °C, also known as low melting point metal. Liquid metal has emerged as an intriguing catalyst due to its commendable electrical conductivity, favorable fluidity, solubility in metals, phase transition capabilities, and modifiable oxide surface, thereby presenting a plethora of prospects for diverse catalytic reactions. In this Perspective, we elucidate the four primary merits of liquid metal catalysts: resistance to coking, the ability to tune elemental composition, the potential for structural transformation, and the capacity to inhibit coalescence. In light of this, a comprehensive summary is presented on the research advancements pertaining to liquid metal in methane pyrolysis, alkane dehydrogenation, carbon dioxide reduction, alcohol oxidation, and various other catalytic reactions. Finally, the challenges and prospects of liquid metal catalysts are elucidated.
Collapse
Affiliation(s)
- Chenyang Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Tingli Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Mengqi Zeng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Lei Fu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- The Institute for Advanced Studies (IAS), Wuhan University, Wuhan 430072, China
| |
Collapse
|
21
|
Han J, Ma Q, An Y, Wu F, Zhao Y, Wu G, Wang J. The current status of stimuli-responsive nanotechnologies on orthopedic titanium implant surfaces. J Nanobiotechnology 2023; 21:277. [PMID: 37596638 PMCID: PMC10439657 DOI: 10.1186/s12951-023-02017-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/21/2023] [Indexed: 08/20/2023] Open
Abstract
With the continuous innovation and breakthrough of nanomedical technology, stimuli-responsive nanotechnology has been gradually applied to the surface modification of titanium implants to achieve brilliant antibacterial activity and promoted osteogenesis. Regarding to the different physiological and pathological microenvironment around implants before and after surgery, these surface nanomodifications are designed to respond to different stimuli and environmental changes in a timely, efficient, and specific way/manner. Here, we focus on the materials related to stimuli-responsive nanotechnology on titanium implant surface modification, including metals and their compounds, polymer materials and other materials. In addition, the mechanism of different response types is introduced according to different activation stimuli, including magnetic, electrical, photic, radio frequency and ultrasonic stimuli, pH and enzymatic stimuli (the internal stimuli). Meanwhile, the associated functions, potential applications and developing prospect were discussion.
Collapse
Affiliation(s)
- Jingyuan Han
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Qianli Ma
- Department of Biomaterials, Institute of Clinical Dentistry, University of Oslo, Geitmyrsveien, Oslo, 710455 Norway
| | - Yanxin An
- Department of General Surgery, The First Affiliated Hospital of Xi’an Medical University, Xi’an, China
| | - Fan Wu
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Yuqing Zhao
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Gaoyi Wu
- School of Stomatology, Heilongjiang Key Lab of Oral Biomedicine Materials and Clinical Application, Experimental Center for Stomatology Engineering, Jiamusi University, Jiamusi, 154007 China
| | - Jing Wang
- Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Oral Implants, School of Stomatology, The Fourth Military Medical University, Xi’an, 710032 China
| |
Collapse
|
22
|
Lau CS, Das S, Verzhbitskiy IA, Huang D, Zhang Y, Talha-Dean T, Fu W, Venkatakrishnarao D, Johnson Goh KE. Dielectrics for Two-Dimensional Transition-Metal Dichalcogenide Applications. ACS NANO 2023. [PMID: 37257134 DOI: 10.1021/acsnano.3c03455] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Despite over a decade of intense research efforts, the full potential of two-dimensional transition-metal dichalcogenides continues to be limited by major challenges. The lack of compatible and scalable dielectric materials and integration techniques restrict device performances and their commercial applications. Conventional dielectric integration techniques for bulk semiconductors are difficult to adapt for atomically thin two-dimensional materials. This review provides a brief introduction into various common and emerging dielectric synthesis and integration techniques and discusses their applicability for 2D transition metal dichalcogenides. Dielectric integration for various applications is reviewed in subsequent sections including nanoelectronics, optoelectronics, flexible electronics, valleytronics, biosensing, quantum information processing, and quantum sensing. For each application, we introduce basic device working principles, discuss the specific dielectric requirements, review current progress, present key challenges, and offer insights into future prospects and opportunities.
Collapse
Affiliation(s)
- Chit Siong Lau
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Sarthak Das
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ivan A Verzhbitskiy
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Ding Huang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Yiyu Zhang
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Teymour Talha-Dean
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Physics and Astronomy, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Wei Fu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Dasari Venkatakrishnarao
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Kuan Eng Johnson Goh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
- Department of Physics, National University of Singapore, 2 Science Drive 3, 117551, Singapore
- Division of Physics and Applied Physics, School of Physical and Mathematical Sciences, Nanyang Technological University, 50 Nanyang Avenue 639798, Singapore
| |
Collapse
|
23
|
Huang CH, Weng CY, Chen KH, Chou Y, Wu TL, Chou YC. Multiple-State Nonvolatile Memory Based on Ultrathin Indium Oxide Film via Liquid Metal Printing. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37202222 DOI: 10.1021/acsami.3c03002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
In this work, the ultrathin two-dimensional (2D) indium oxide (InOx) with a large area of more than 100 μm2 and a high degree of uniformity was automatically peeled off from indium by the liquid-metal printing technique. Raman and optical measurements revealed that 2D-InOx has a polycrystalline cubic structure. By altering the printing temperature which affects the crystallinity of 2D-InOx, the mechanism of the existence and disappearance of memristive characteristics was established. The tunable characteristics of the 2D-InOx memristor with reproducible one-order switching was manifest from the electrical measurements. Further adjustable multistate characteristics of the 2D-InOx memristor and its resistance switching mechanism were evaluated. A detailed examination of the memristive process demonstrated the Ca2+ mimic dynamic in 2D-InOx memristors as well as the fundamental principles underlying biological and artificial synapses. These surveys allow us to comprehend a 2D-InOx memristor using the liquid-metal printing technique and could be applied to future neuromorphic applications and in the field of revolutionary 2D material exploration.
Collapse
Affiliation(s)
- Chang-Hsun Huang
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chen-Yuan Weng
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Kuan-Hung Chen
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Yi Chou
- Department of Electrophysics, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Tian-Li Wu
- International College of Semiconductor Technology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan
| | - Yi-Chia Chou
- Department of Materials Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
24
|
Zhou K, Shang G, Hsu HH, Han ST, Roy VAL, Zhou Y. Emerging 2D Metal Oxides: From Synthesis to Device Integration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207774. [PMID: 36333890 DOI: 10.1002/adma.202207774] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/26/2022] [Indexed: 05/26/2023]
Abstract
2D metal oxides have aroused increasing attention in the field of electronics and optoelectronics due to their intriguing physical properties. In this review, an overview of recent advances on synthesis of 2D metal oxides and their electronic applications is presented. First, the tunable physical properties of 2D metal oxides that relate to the structure (various oxidation-state forms, polymorphism, etc.), crystallinity and defects (anisotropy, point defects, and grain boundary), and thickness (quantum confinement effect, interfacial effect, etc.) are discussed. Then, advanced synthesis methods for 2D metal oxides besides mechanical exfoliation are introduced and classified into solution process, vapor-phase deposition, and native oxidation on a metal source. Later, the various roles of 2D metal oxides in widespread applications, i.e., transistors, inverters, photodetectors, piezotronics, memristors, and potential applications (solar cell, spintronics, and superconducting devices) are discussed. Finally, an outlook of existing challenges and future opportunities in 2D metal oxides is proposed.
Collapse
Affiliation(s)
- Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Gang Shang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hsiao-Hsuan Hsu
- Department of Materials and Mineral Resources Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Vellaisamy A L Roy
- James Watt School of Engineering, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
25
|
Allioux FM, Merhebi S, Liu L, Centurion F, Abbasi R, Zhang C, Ireland J, Biazik JM, Mayyas M, Yang J, Mousavi M, Ghasemian MB, Tang J, Xie W, Rahim MA, Kalantar-Zadeh K. A liquid metal-polydopamine composite for cell culture and electro-stimulation. J Mater Chem B 2023; 11:3941-3950. [PMID: 37067358 DOI: 10.1039/d2tb02079c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Gallium (Ga) is a low melting point metal in the liquid state in the biological environment which presents a unique combination of fluidity, softness, and metallic electrical and thermal properties. In this work, liquid Ga is proposed as a biocompatible electrode material for cell culture by electro-stimulation since the cytotoxicity of Ga is generally considered low and some Ga compounds have been reported to exhibit anti-bacterial and anti-inflammatory activities. Complementarily, polydopamine (PDA) was coated on liquid Ga to increase the attachment capability of cells on the liquid Ga electrode and provide enhanced biocompatibility. The liquid Ga layer could be readily painted at room temperature on a solid inert substrate, followed by the formation of a nanoscale PDA coating layer resulting in a conformable and biocompatible composite electrode. The PDA layer was shown to coordinate with Ga3+, which is sourced from liquid Ga, providing electrical conductivity in the cell culture medium. The PDA-Ga3+ composite acted as a conductive substrate for advanced electro-stimulation for cell culture methods of representative animal fibroblasts. The cell proliferation was observed to increase by ∼143% as compared to a standard glass coverslip at a low potential of 0.1 V of direct coupling stimulation. This novel PDA-Ga3+ composite has potential applications in cell culture and regenerative medicine.
Collapse
Affiliation(s)
- Francois-Marie Allioux
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Salma Merhebi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Li Liu
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Franco Centurion
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Roozbeh Abbasi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Chengchen Zhang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Jake Ireland
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Joanna M Biazik
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Mohannad Mayyas
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Jiong Yang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Maedehsadat Mousavi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Mohammad B Ghasemian
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Wanjie Xie
- Evolution and Optics of Nanostructures Group, Department of Biology, University of Ghent, K. L. Ledeganckstraat 35, 9000 Ghent, Belgium
| | - Md Arifur Rahim
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical and Biomolecular Engineering, The University of Sydney, Sydney, NSW, 2006, Australia.
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW 2052, Australia
| |
Collapse
|
26
|
Guo X, Nguyen CK, Mazumder A, Wang Y, Syed N, Gaspera ED, Daeneke T, Walia S, Ippolito SJ, Sabri Y, Li Y, Zavabeti A. Gas sensors based on the oxide skin of liquid indium. NANOSCALE 2023; 15:4972-4981. [PMID: 36786287 DOI: 10.1039/d2nr05926f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Various non-stratified two-dimensional (2D) materials can be obtained from liquid metal surfaces that are not naturally accessible. Homogenous nucleation on atomically flat interfaces of liquid metals with air produces unprecedented high-quality oxide layers that can be transferred onto desired substrates. The atomically flat and large areas provide large surface-to-volume ratios ideal for sensing applications. Versatile crucial applications of the liquid metal-derived 2D oxides have been realized; however, their gas-sensing properties remain largely underexplored. The cubic In2O3 structure, which is nonlayered, can be formed as an ultrathin layer on the surface of liquid indium during the self-limiting Cabrera-Mott oxidation process in the air. The morphology, crystal structure, and band structure of the harvested 2D In2O3 nanosheets from liquid indium are characterized. Sensing capability toward several gases, both inorganic and organic, entailing NO2, O2, NH3, H2, H2S, CO, and Methyl ethyl ketone (MEK) are explored. A high ohmic resistance change of 1974% at 10 ppm, fast response, and recovery times are observed for NO2 at an optimum temperature of 200 °C. The sensing fundamentals are investigated for NO2, and its performances and cross-selectivity to different gases are analyzed. The NO2 sensing response from room temperature to 300 °C has been measured and discussed, and stability after 24 hours of continuous operation is presented. The results demonstrate liquid metal-derived 2D oxides as promising materials for gas sensing applications.
Collapse
Affiliation(s)
- Xiangyang Guo
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Chung Kim Nguyen
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Aishani Mazumder
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Yichao Wang
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
- School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Nitu Syed
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
- School of Physics, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
| | | | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Sumeet Walia
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Samuel J Ippolito
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Ylias Sabri
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Yongxiang Li
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
| | - Ali Zavabeti
- School of Engineering, RMIT University, Melbourne, VIC, 3000, Australia.
- Department of Chemical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia.
| |
Collapse
|
27
|
Gebert M, Bhattacharyya S, Bounds CC, Syed N, Daeneke T, Fuhrer MS. Passivating Graphene and Suppressing Interfacial Phonon Scattering with Mechanically Transferred Large-Area Ga 2O 3. NANO LETTERS 2023; 23:363-370. [PMID: 36410928 PMCID: PMC9837877 DOI: 10.1021/acs.nanolett.2c03492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/03/2022] [Indexed: 06/16/2023]
Abstract
We demonstrate a large-area passivation layer for graphene by mechanical transfer of ultrathin amorphous Ga2O3 synthesized on liquid Ga metal. A comparison of temperature-dependent electrical measurements of millimeter-scale passivated and bare graphene on SiO2/Si indicates that the passivated graphene maintains its high field effect mobility desirable for applications. Surprisingly, the temperature-dependent resistivity is reduced in passivated graphene over a range of temperatures below 220 K, due to the interplay of screening of the surface optical phonon modes of the SiO2 by high-dielectric-constant Ga2O3 and the relatively high characteristic phonon frequencies of Ga2O3. Raman spectroscopy and electrical measurements indicate that Ga2O3 passivation also protects graphene from further processing such as plasma-enhanced atomic layer deposition of Al2O3.
Collapse
Affiliation(s)
- Matthew Gebert
- School
of Physics and Astronomy, Monash University, Melbourne, Victoria 3800, Australia
- ARC
Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Melbourne, Victoria 3800, Australia
| | - Semonti Bhattacharyya
- School
of Physics and Astronomy, Monash University, Melbourne, Victoria 3800, Australia
- ARC
Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Melbourne, Victoria 3800, Australia
- Leiden
Institute of Physics, Leiden University, Niels Bohrweg 2, 2333 CA, Leiden, The Netherlands
| | - Christopher C Bounds
- School
of Physics and Astronomy, Monash University, Melbourne, Victoria 3800, Australia
| | - Nitu Syed
- School
of Physics, The University of Melbourne, Parkville, Melbourne, Victoria 3010, Australia
- School
of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Torben Daeneke
- School
of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
- ARC Centre
of Excellence in Future Low-Energy Electronics Technologies, RMIT University, Melbourne, Victoria 3000, Australia
| | - Michael S. Fuhrer
- School
of Physics and Astronomy, Monash University, Melbourne, Victoria 3800, Australia
- ARC
Centre of Excellence in Future Low-Energy Electronics Technologies, Monash University, Melbourne, Victoria 3800, Australia
| |
Collapse
|
28
|
Zhao Z, Soni S, Lee T, Nijhuis CA, Xiang D. Smart Eutectic Gallium-Indium: From Properties to Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2203391. [PMID: 36036771 DOI: 10.1002/adma.202203391] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/30/2022] [Indexed: 05/27/2023]
Abstract
Eutectic gallium-indium (EGaIn), a liquid metal with a melting point close to or below room temperature, has attracted extensive attention in recent years due to its excellent properties such as fluidity, high conductivity, thermal conductivity, stretchability, self-healing capability, biocompatibility, and recyclability. These features of EGaIn can be adjusted by changing the experimental condition, and various composite materials with extended properties can be further obtained by mixing EGaIn with other materials. In this review, not only the are unique properties of EGaIn introduced, but also the working principles for the EGaIn-based devices are illustrated and the developments of EGaIn-related techniques are summarized. The applications of EGaIn in various fields, such as flexible electronics (sensors, antennas, electronic circuits), molecular electronics (molecular memory, opto-electronic switches, or reconfigurable junctions), energy catalysis (heat management, motors, generators, batteries), biomedical science (drug delivery, tumor therapy, bioimaging and neural interfaces) are reviewed. Finally, a critical discussion of the main challenges for the development of EGaIn-based techniques are discussed, and the potential applications in new fields are prospected.
Collapse
Affiliation(s)
- Zhibin Zhao
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| | - Saurabh Soni
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Takhee Lee
- Department of Physics and Astronomy, Institute of Applied Physics, Seoul National University, Seoul, 08826, Korea
| | - Christian A Nijhuis
- Department of Molecules and Materials, MESA+ Institute for Nanotechnology, Molecules Center and Center for Brain-Inspired Nano Systems, Faculty of Science and Technology, University of Twente, Enschede, 7500 AE, The Netherlands
| | - Dong Xiang
- Institute of Modern Optics and Center of Single Molecule Sciences, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Nankai University, 300350, Tianjin, P. R. China
| |
Collapse
|
29
|
Mousavi M, Mittal U, Ghasemian MB, Baharfar M, Tang J, Yao Y, Merhebi S, Zhang C, Sharma N, Kalantar-Zadeh K, Mayyas M. Liquid Metal-Templated Tin-Doped Tellurium Films for Flexible Asymmetric Pseudocapacitors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:51519-51530. [PMID: 36322105 DOI: 10.1021/acsami.2c15131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Liquid metals can be surface activated to generate a controlled galvanic potential by immersing them in aqueous solutions. This creates energized liquid-liquid interfaces that can promote interfacial chemical reactions. Here we utilize this interfacial phenomenon of liquid metals to deposit thin films of tin-doped tellurium onto rigid and flexible substrates. This is accomplished by exposing liquid metals to a precursor solution of Sn2+ and HTeO2+ ions. The ability to paint liquid metals onto substrates enables us to fabricate supercapacitor electrodes of liquid metal films with an intimately connected surface layer of tin-doped tellurium. The tin-doped tellurium exhibits a pseudocapacitive behavior in 1.0 M Na2SO4 electrolyte and records a specific capacitance of 184.06 F·g-1 (5.74 mF·cm-2) at a scan rate of 10 mV·s-1. Flexible supercapacitor electrodes are also fabricated by painting liquid metals onto polypropylene sheets and subsequently depositing tin-doped tellurium thin films. These flexible electrodes show outstanding mechanical stability even when experiencing a complete 180° bend as well as exhibit high power and energy densities of 160 W·cm-3 and 31 mWh·cm-3, respectively. Overall, this study demonstrates the attractive features of liquid metals in creating energy storage devices and exemplifies their use as media for synthesizing electrochemically active materials.
Collapse
Affiliation(s)
- Maedehsadat Mousavi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney2052, Australia
| | - Uttam Mittal
- School of Chemistry, UNSW Sydney, Kensington, New South Wales2052, Australia
| | - Mohammad B Ghasemian
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney2052, Australia
| | - Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney2052, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney2052, Australia
| | - Yin Yao
- Electron Microscope Unit, University of New South Wales (UNSW), Sydney Campus, Sydney, New South Wales2052, Australia
| | - Salma Merhebi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney2052, Australia
| | - Chengchen Zhang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney2052, Australia
| | - Neeraj Sharma
- School of Chemistry, UNSW Sydney, Kensington, New South Wales2052, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney2052, Australia
| | - Mohannad Mayyas
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney2052, Australia
| |
Collapse
|
30
|
Akyildiz K, Kim JH, So JH, Koo HJ. Recent progress on micro- and nanoparticles of gallium-based liquid metal: From preparation to applications. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
31
|
Ji Y, Li Z, Liu Y, Wu X, Ren L. Design and Synthesis of Cobalt-Based Hollow Nanoparticles through the Liquid Metal Template. MICROMACHINES 2022; 13:1292. [PMID: 36014214 PMCID: PMC9415925 DOI: 10.3390/mi13081292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Co-based compounds have attracted much attention due to their competitive catalytic activities. To enhance their intrinsic electrocatalytic activity, morphology engineering is one of the effective strategies. Hollow structures have fascinating properties due to their low density and high loading capacity. In this work, we introduce a Ga-based liquid alloy as a reactive template for the synthesis of varying Co-based hollow nanoparticles. The fluidity character of the Ga-based liquid alloy facilitates the large-scale production of nanoparticles via a top-down shearing process. The pre-installed active species (here is Zn) in the liquid alloy serve as a sacrificial source to quantitatively reduce Co2+ ions and form Co-based compounds. Well-structured Ga/CoOOH core-shell nanospheres are thus successfully prepared, and more varied Co-based hollow nanoparticles can be obtained by post-treatment and reaction. Hollow structures can offer enhanced interfacial area and increased active sites, benefiting the catalytic performance. Among the prepared Co-based catalysts, CoSe2 hollow nanoparticles exhibited the best oxygen evolution reaction (OER) activity with an overpotential of 340 mV at the current density of 10 mA/cm2. This work provides a novel strategy for the rational design and simple preparation of hollow nanoparticles.
Collapse
Affiliation(s)
- Yuan Ji
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Zhenlong Li
- School of Basic Medical Sciences, Zhuhai Campus, Zunyi Medical University, Zhuhai 519041, China
| | - Yundan Liu
- Hunan Key Laboratory of Micro-Nano Energy Materials and Devices, Laboratory for Quantum Engineering and Micro-Nano Energy Technology, Faculty of Materials and Optoelectronic Physics, Xiangtan University, Xiangtan 411105, China
| | - Xianghua Wu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Long Ren
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China
| |
Collapse
|