1
|
Vikas, Kathuria L, Brodie CN, Cross MJ, Pasha FA, Weller AS, Kumar A. Selective PNP Pincer-Ir-Promoted Acceptorless Transformation of Glycerol to Lactic Acid and Hydrogen. Inorg Chem 2025; 64:3760-3770. [PMID: 39962705 DOI: 10.1021/acs.inorgchem.4c04580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
The catalytic transformation of glycerol (GLY) using [(iPr2PNHP)Ir(COD)]Cl [iPr2PNHP = κ3-(iPr2PCH2CH2)2NH] affords hydrogen and lactic acid (LA), trapped as its sodium salt (Na[LA]) with high yield (96%) and selectivity (99%) in the presence of an equivalent of in situ generated NaOEt at 140 °C within 4 h. A diminution in activity was observed when the PNMeP ligand was used instead of PNHP, or when Cl- was replaced by [BArF4]-. An Ir to Rh substitution also resulted in poor activity. Kinetic studies show a first-order dependence of the initial rate of turnovers on the concentrations of [(iPr2PNHP)Ir(COD)]Cl, NaOEt, and glycerol. An outer-sphere mechanism does not explain the activity of [(iPr2PNMeP)Ir(COD)]Cl, and DFT studies support an inner-sphere mechanism, with oxidative addition of glycerol to the 14-electron intermediate [(iPr2PNHP)Ir]Cl determined as the rate-determining step (RDS). A kH/kD of 2.7 obtained with glycerol-d8 shows a major contribution from O-H activation in the RDS. The kinetics of the reaction become favorable (ΔG140⧧ = 27.01 kcal/mol) when one of the terminal O-H's of glycerol is hydrogen bonded to the N-H of the pincer backbone, in contrast to cases where no hydrogen bonds are invoked (ΔG140⧧ = 31.96 kcal/mol) or are not possible [(iPr2PNMeP)Ir]Cl (ΔG140⧧ = 30.36 kcal/mol).
Collapse
Affiliation(s)
- Vikas
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Lakshay Kathuria
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Claire N Brodie
- Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Mathew J Cross
- Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Farhan Ahmad Pasha
- SABIC, Corporate Research and Development, King Abdullah University of Science and Technology, Thuwal 23955, Saudi Arabia
| | - Andrew S Weller
- Department of Chemistry, University of York, York YO10 5DD, U.K
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Bhupat Mehta School of Health Science and Technology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
2
|
Venkateshappa B, Bisarya A, Nandi PG, Dhole S, Kumar A. Production of Lactic Acid via Catalytic Transfer Dehydrogenation of Glycerol Catalyzed by Base Metal Salt Ferrous Chloride and Its NNN Pincer-Iron Complexes. Inorg Chem 2024; 63:15294-15310. [PMID: 39112425 DOI: 10.1021/acs.inorgchem.4c01976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
NNN-Bis(imino) pyridine-based pincer-Fe(II) complexes with an expected trigonal bipyramidal (TBP) geometry equilibrated to a rearranged ion pair of an octahedral dicationic Fe complex containing two bis(imino)pyridine ligands that are neutralized by a tetrahedral dianionic-[FeCl4]2-. Single-crystal X-ray diffraction (SCXRD), high-resolution mass spectrometry (HRMS), and UV-visible (UV-vis) studies suggested that the equilibrium was dictated by the sterics of the R group on the imine N, with the less-crowded groups tilting the equilibrium to the ion pair and the bulky ones favoring the TBP geometry. Electron paramagnetic resonance (EPR) and Evan's magnetic moment measurements indicated that the complexes were paramagnetic with Fe(II) in a high-spin state. In solution, over a period of 7 days, these Fe(II) complexes oxidized to a mixture of low-spin and high-spin Fe(III) species. These pincer-Fe(II) were found to be highly active toward the transformation of biodiesel waste glycerol to value-added lactic acid (LA). Particularly, (Ph2NNN)FeCl2 (0.1 mol %) gave 91% LA with a 99% selectivity at 140 °C using 1.2 equiv of NaOH. With 0.0001 mol % (Ph2NNN)FeCl2, very high turnovers (74% LA, 98% selectivity, 740 000 turnover number (TON) at 4405 turnovers per hour (TOs/h)) were obtained after 7 days. EPR indicated Fe(III) species to be the active catalyst, a few of which were detected by HRMS. Experiments with Hg are suggestive of the mostly homogeneous molecular nature of the catalyst with a minor contribution from heterogeneous Fe nanoparticles.
Collapse
Affiliation(s)
- Babu Venkateshappa
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Akshara Bisarya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pran Gobinda Nandi
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sunil Dhole
- ChemDist Group of Companies, Plot No 144 A, Sector 7, PCNTDA Bhosari, Pune 411026, Maharashtra, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences & Technology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
3
|
Bisarya A, Dhole S, Kumar A. Efficient net transfer-dehydrogenation of glycerol: NNN pincer-Mn and manganese chloride as a catalyst unlocks the effortless production of lactic acid and isopropanol. Dalton Trans 2024; 53:12698-12709. [PMID: 39015088 DOI: 10.1039/d4dt01731e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
Herein, a series of pincer-Mn complexes based on bis(imino)pyridine ligands of the type R2NNN (R = tBu, iPr, Cy and Ph) were synthesized and characterized using various spectroscopic techniques. SCXRD studies revealed a trigonal bipyramidal geometry around the metal center in all the complexes. EPR spectroscopy confirmed the presence of high-spin Mn(II) centers with the consistent observation of sextets in EPR spectra. Additionally, solution magnetic moment measurement exhibited values ranging from 5.8 to 6.2 BM for all the complexes, which are in accordance with the theoretical value of 5.92 BM. HRMS analysis complemented structural characterization, showing fragments corresponding to various solvent adducts and derivatives of the complexes. Subsequently, the synthesized complexes were investigated for their catalytic activity in the transfer dehydrogenation of glycerol to lactic acid in the presence of acetone. Among the considered complexes, the catalyst Ph2NNNMnCl2 was found to be highly efficient. Remarkably, a yield of 92% LA was observed with >99% selectivity at 0.5 mol% loading of Ph2NNNMnCl2 in the presence of 1 equivalent of NaOH at 140 °C in 24 h, surpassing the yield obtained from its precursor MnCl2·4H2O, where a yield of 72% LA was observed with 96% selectivity under similar reaction conditions. This catalytic system was further investigated with a range of acceptors, and good to moderate yields were observed in most cases. Moreover, several control experiments, including reaction with PPh3, CS2 and Hg, highlighted the major involvement of molecular species in the reaction medium. Deuterium labelling studies indicated the involvement of C-H bond activation in the catalytic cycle but not in the rate-determining step (RDS), with a secondary kinetic isotope effect (KIE) of 1.25.
Collapse
Affiliation(s)
- Akshara Bisarya
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
| | - Sunil Dhole
- ChemDist Group of Companies, Plot No 144 A, Sector 7, PCNTDA, Bhosari, Pune - 411026, Maharashtra, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India.
- Center for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Sciences & Technology, Indian Institute of Technology Guwahati, Guwahati - 781039, Assam, India
| |
Collapse
|
4
|
Narjinari H, Dhole S, Kumar A. Acceptorless or Transfer Dehydrogenation of Glycerol Catalyzed by Base Metal Salt Cobaltous Chloride - Facile Access to Lactic Acid and Hydrogen or Isopropanol. Chemistry 2024; 30:e202302686. [PMID: 37811834 DOI: 10.1002/chem.202302686] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/10/2023]
Abstract
The dehydrogenation of glycerol to lactic acid (LA) under both acceptorless and transfer dehydrogenation conditions using readily available, inexpensive, environmentally benign and earth-abundant base metal salt CoCl2 is reported here. The CoCl2 (0.5 mol %) catalyzed acceptorless dehydrogenation of glycerol at 160 °C in the presence of 0.75 equiv. of KOH, gave up to 33 % yield of LA in 44 % selectivity apart from hydrogen. Alternatively, with acetone as a sacrificial hydrogen acceptor, the CoCl2 (0.5 mol %) catalyzed dehydrogenation of glycerol at 160 °C in the presence of 1.1 equiv. of NaOt Bu resulted in up to 93 % LA with 96 % selectivity along with another value-added product isopropanol. Labelling studies revealed a modest secondary KIE of 1.68 which points to the involvement of C-H bond activation as a part of the catalytic cycle but not as a part of the rate-determining step. Catalyst poisoning experiments with PPh3 and CS2 are indicative of the homogeneous nature of the reaction mixture involving molecular species that are likely to be in-situ formed octahedral Co(II) as inferred from EPR, HRMS and Evans magnetic moment studies. The net transfer dehydrogenation activity is attributed to exclusive contribution from the alcoholysis step.
Collapse
Affiliation(s)
- Himani Narjinari
- Department of Chemistry, Indian Institution of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Sunil Dhole
- ChemDist Group of Companies, Plot No 144 A, Sector 7, PCNTDA Bhosari, Pune, 411026, Maharashtra, India
| | - Akshai Kumar
- Department of Chemistry, Indian Institution of Technology Guwahati, Guwahati, 781039, Assam, India
- Centre for Nanotechnology, Indian Institution of Technology Guwahati, Guwahati, 781039, Assam, India
- Jyoti and Bhupat Mehta School of Health Science and Technology, Indian Institution of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
5
|
Ma L, Liu H, He D. Recent Progress in Catalyst Development of the Hydrogenolysis of Biomass-Based Glycerol into Propanediols-A Review. Bioengineering (Basel) 2023; 10:1264. [PMID: 38002388 PMCID: PMC10669600 DOI: 10.3390/bioengineering10111264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/28/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
The use of biomass-based glycerol to produce chemicals with high added value is of great significance for solving the problem of glycerol surplus and thus reducing the production cost of biodiesel. The production of 1,2-propanediol (abbreviated as 1,2-PDO) and 1,3-propanediol (abbreviated as 1,3-PDO) via the hydrogenolysis of glycerol is one of the most representative and highest-potential processes for the comprehensive utilization of biomass-based glycerol. Glycerol hydrogenolysis may include several parallel and serial reactions (involving broken C-O and C-C bonds), and therefore, the catalyst is a key factor in improving the rate of glycerol hydrogenolysis and the selectivities of the target products. Over the past 20 years, glycerol hydrogenolysis has been extensively investigated, and until now, the developments of catalysts for glycerol hydrogenolysis have been active research topics. Non-precious metals, including Cu, Ni, and Co, and some precious metals (Ru, Pd, etc.) have been used as the active components of the catalysts for the hydrogenolysis of glycerol to 1,2-PDO, while precious metals such as Pt, Rh, Ru, Pd, and Ir have been used for the catalytic conversion of glycerol to 1,3-PDO. In this article, we focus on reviewing the research progress of the catalyst systems, including Cu-based catalysts and Pt-, Ru-, and Pd-based catalysts for the hydrogenolysis of glycerol to 1,2-PDO, as well as Pt-WOx-based and Ir-ReOx-based catalysts for the hydrogenolysis of glycerol to 1,3-PDO. The influence of the properties of active components and supports, the effects of promoters and additives, and the interaction and synergic effects between active component metals and supports are also examined.
Collapse
Affiliation(s)
- Lan Ma
- Institute of Chemical Defense, Beijing 102205, China;
| | - Huimin Liu
- School of Chemical and Environmental Engineering, Liaoning University of Technology, Jinzhou 121001, China
| | - Dehua He
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
6
|
Redina EA, Vikanova KV, Tkachenko OP, Kapustin GI, Kustov LM. Selective Hydrodeoxygenation of Glycerol to 1,2-Propanediol with the Pt/CeO2–ZrO2 Catalyst. DOKLADY CHEMISTRY 2022. [DOI: 10.1134/s0012500822600158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
|
7
|
Beine AK, Wang X, Vennewald M, Schmidt RUS, Glotzbach C, Palkovits R, Hausoul P. On the effect of alkaline earth metal cations in the hydrogenolysis of glycerol over Pt/C – an experimental and theoretical study. ChemCatChem 2022. [DOI: 10.1002/cctc.202101940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Anna Katharina Beine
- Max-Planck-Institute for Chemical Energy Conversion: Max-Planck-Institut fur chemische Energiekonversion solid molecular catalysts Stiftstr. 36-38 45470 Mülheim an der Ruhr GERMANY
| | - Xinde Wang
- RWTH Aachen: Rheinisch-Westfalische Technische Hochschule Aachen ITMC GERMANY
| | - Maurice Vennewald
- RWTH Aachen: Rheinisch-Westfalische Technische Hochschule Aachen ITMC GERMANY
| | | | | | - Regina Palkovits
- RWTH Aachen: Rheinisch-Westfalische Technische Hochschule Aachen ITMC GERMANY
| | - Peter Hausoul
- RWTH AACHEN ITMC Worringerweg 2 52074 Aachen GERMANY
| |
Collapse
|
8
|
Catalytic Conversion of Glycerol into Hydrogen and Value-Added Chemicals: Recent Research Advances. Catalysts 2021. [DOI: 10.3390/catal11121455] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In recent decades, the use of biomass as alternative resources to produce renewable and sustainable biofuels such as biodiesel has gained attention given the situation of the progressive exhaustion of easily accessible fossil fuels, increasing environmental concerns, and a dramatically growing global population. The conventional transesterification of edible, nonedible, or waste cooking oils to produce biodiesel is always accompanied by the formation of glycerol as the by-product. Undeniably, it is essential to economically use this by-product to produce a range of valuable fuels and chemicals to ensure the sustainability of the transesterification process. Therefore, recently, glycerol has been used as a feedstock for the production of value-added H2 and chemicals. In this review, the recent advances in the catalytic conversion of glycerol to H2 and high-value chemicals are thoroughly discussed. Specifically, the activity, stability, and recyclability of the catalysts used in the steam reforming of glycerol for H2 production are covered. In addition, the behavior and performance of heterogeneous catalysts in terms of the roles of active metal and support toward the formation of acrolein, lactic acid, 1,3-propanediol, and 1,2-propanediol from glycerol are reviewed. Recommendations for future research and main conclusions are provided. Overall, this review offers guidance and directions for the sufficient and economical utilization of glycerol to generate fuels and high value chemicals, which will ultimately benefit industry, environment, and economy.
Collapse
|