1
|
Kim BJ, Park SH, Díaz-Ramírez ML, Jeong NC. Proton-conducting copper-based MOFs for fuel cells. Chem Commun (Camb) 2025; 61:3582-3600. [PMID: 39902872 DOI: 10.1039/d4cc06378c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Metal-organic frameworks (MOFs) are emerging as promising alternatives for proton-conductive materials due to their high porosity, large surface area, stability, and relatively low cost. Among these, copper-based MOFs (Cu-MOFs) stand out with unique advantages, including open metal sites, variable valence states, and strongly electrophilic Cu centers. In this review, we discuss recent advances and developments in the use of Cu-MOFs as proton-conductive materials, with a particular focus on their application as proton exchange membranes (PEMs). We introduce the most common strategies employed to date and review the key features that have contributed to the construction of efficient proton transport pathways in Cu-MOFs. Additionally, we review PEMs fabricated via direct thin-film deposition or as mixed-matrix membranes (MMMs) incorporating Cu-MOF fillers. Finally, we address the challenges that must be overcome in the coming years to develop more robust Cu-MOFs and to create more efficient thin films and Cu-MOF-based MMMs.
Collapse
Affiliation(s)
- Byong June Kim
- Department of Physics & Chemistry, DGIST, Daegu 42988, Korea.
| | - Sun Ho Park
- Department of Physics & Chemistry, DGIST, Daegu 42988, Korea.
| | - Mariana L Díaz-Ramírez
- Department of Physics & Chemistry, DGIST, Daegu 42988, Korea.
- Center for Basic Science, DGIST, Daegu 42988, Korea
| | - Nak Cheon Jeong
- Department of Physics & Chemistry, DGIST, Daegu 42988, Korea.
- Center for Basic Science, DGIST, Daegu 42988, Korea
| |
Collapse
|
2
|
Yu Z, Li X, Wang Z, Fan Y, Zhao W, Li D, Xu D, Gu T, Wang F. Robust Chiral Metal-Organic Framework Coatings for Self-Activating and Sustainable Biofouling Mitigation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407409. [PMID: 39235391 DOI: 10.1002/adma.202407409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/24/2024] [Indexed: 09/06/2024]
Abstract
Surface coatings are designed to mitigate pervasive biofouling herald, a new era of surface protection in complex biological environments. However, existing strategies are plagued by persistent and recurrent biofilm attachment, despite the use of bactericidal agents. Herein, a chiral metal-organic framework (MOF)-based coating with conformal microstructures to enable a new anti-biofouling mode that involves spontaneous biofilm disassembly followed by bacterial eradication is developed. A facile and universal metal-polyphenol network (MPN) is designed to robustly anchor the MOF nanoarmor of biocidal Cu2+ ions and anti-biofilm d-amino acid ligands to a variety of substrates across different material categories and surface topologies. Incorporating a diverse array of chiral amino acids endows the resultant coatings with widespread signals for biofilm dispersal, facilitating copper-catalyzed chemodynamic reactions and inherent mechano-bactericidal activities. This synergistic mechanism yields unprecedented anti-biofouling efficacy elucidated by RNA-sequencing transcriptomics analysis, enhancing broad-spectrum antibacterial activities, preventing biofilm formation, and destroying mature biofilms. Additionally, the chelation-directed amorphous/crystalline coatings can activate photoluminescent properties to inhibit the settlement of microalgae biofilms. This study provides a distinctive perspective on chirality-enhanced antimicrobial behaviors and pioneers a rational pathway toward developing next-generation anti-biofouling coatings for diverse applications.
Collapse
Affiliation(s)
- Zhiqun Yu
- Corrosion and Protection Center, Northeastern University, Shenyang, 110819, P. R. China
| | - Xiangyu Li
- Corrosion and Protection Center, Northeastern University, Shenyang, 110819, P. R. China
| | - Zhengxing Wang
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Yongqiang Fan
- College of Life and Health Sciences, Northeastern University, Shenyang, 110819, P. R. China
| | - Wenjie Zhao
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Dianzhong Li
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, P. R. China
| | - Dake Xu
- Corrosion and Protection Center, Northeastern University, Shenyang, 110819, P. R. China
| | - Tingyue Gu
- Department of Chemical and Biomolecular Engineering, Edison Biotechnology Institute, Ohio University, Athens, OH, 45701, USA
| | - Fuhui Wang
- Corrosion and Protection Center, Northeastern University, Shenyang, 110819, P. R. China
| |
Collapse
|
3
|
Zhang Z, Zhou J, Chen X, Fang F, Wang S, Zhang S, Du L, Zhao Q. SCSC Transformation and Post-Synthesis Modification of MOFs with Proton Conduction and Ratiometric Fluorescence-Sensing Properties. Inorg Chem 2023; 62:5972-5983. [PMID: 37015890 DOI: 10.1021/acs.inorgchem.2c04400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2023]
Abstract
The modification of metal-organic framework (MOF) materials to facilitate their practical applications is an extremely challenging and meaningful topic. In this work, two stepwise modification strategies for MOFs were conducted. First, we have demonstrated a single-crystal-to-single-crystal (SCSC) transformation from a microporous three-dimensional (3D) MOF to a two-dimensional (2D) coordination polymer (CP). The centrosymmetric [Cd(3-bpdb)(MeO-ip)]n (1) transforms into a chiral [Cd2(3-bpdb)(MeO-ip)2(CH3OH)2]n (2), which is triggered by the reaction time with methanol that acts as a structure-directing agent. The conversion relationship of 1 to 2 at different reaction times was studied in detail. Density functional theory (DFT) calculations clearly state that the irreversible formation of 2 is thermodynamically favorable. Intriguingly, 2 exhibits good proton conduction of 1.34 × 10-3 S cm-1 under 363 K and 98% relative humidity (RH) due to unique H-bond network characteristics. To the best of our knowledge, there are very few cases of 3D to 2D SCSC transformation stimulated by reaction time. The results have important implications for understanding the SCSC transformation mechanism and synthetic chemistry. On the other hand, the lanthanide3+-functionalized hybrids (Ln3+-MOF), Ln3+@1, were continuously prepared by incorporating luminescent Ln3+ ions into the structure of 1 through encapsulating post-synthesis modification (PSM). Tb3+@1 exhibits double emission in water and shows visual ratiometric fluorescence behavior for sensing glutamic acid (Glu), tryptophan (Trp), and Al3+, which is more reliable and accurate than single emission. Our work may not only provide new insights into the multiple modification of MOF materials but also promote the practical application of such materials.
Collapse
Affiliation(s)
- Zhen Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Jie Zhou
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Xue Chen
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Fang Fang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Shuyu Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Suoshu Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Lin Du
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| | - Qihua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education and Yunnan Province, Yunnan Characteristic Plant Extraction Laboratory, School of Chemical Science and Technology, Yunnan University, Kunming 650500, P. R. China
| |
Collapse
|
4
|
Li Y, Cai DG, Zhu ZH, Xu H, Zheng TF, Chen JL, Liu SJ, Wen HR. Solvothermal synthesis and device fabrication of a Eu 3+-based metal-organic framework as a turn-on and blue-shift fluorescence sensor toward Cr 3+, Al 3+ and Ga 3. Dalton Trans 2023; 52:4167-4175. [PMID: 36892084 DOI: 10.1039/d2dt03230a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
A novel three-dimensional Eu3+-based metal-organic framework with the formula {[(CH3)2NH2][Eu(BTDI)]·H2O·DMF}n (JXUST-25) was prepared by solvothermal method based on Eu3+ and 5,5'-(benzothiadiazole-4,7-diyl)diisophthalic acid (H4BTDI) with benzothiadiazole (BTD) luminescent groups. Due to the presence of Eu3+ and organic fluorescence ligand, JXUST-25 displays turn-on and blue-shift fluorescence toward Cr3+, Al3+ and Ga3+ with limits of detection (LOD) of 0.073, 0.006 and 0.030 ppm, respectively. Interestingly, the alkaline environment can change the fluorescence of JXUST-25 toward Cr3+/Al3+/Ga3+ and the addition of HCl solution realizes the reversible change of the fluorescence of JXUST-25 toward Cr3+/Al3+/Ga3+. It is noteworthy that the fluorescent test paper and light-emitting diode lamp based on JXUST-25 can effectively detect Cr3+, Al3+ and Ga3+ by the visual changes. In addition, the turn-on and blue-shift fluorescence between JXUST-25 and M3+ ions may be caused by the host-guest interaction and the absorbance caused enhancement mechanism.
Collapse
Affiliation(s)
- Yu Li
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Ding-Gui Cai
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Zi-Hao Zhu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Hui Xu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Jing-Lin Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi Province, P. R. China.
| |
Collapse
|
5
|
Li J, Wang A, Qiu S, Wang X, Li J. A 12-Connected [Y 4(( μ3-OH) 4] 8+ Cluster-Based Luminescent Metal-Organic Framework for Selective Turn-on Detection of F - in H 2O. Molecules 2023; 28:1893. [PMID: 36838884 PMCID: PMC9960892 DOI: 10.3390/molecules28041893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Fluoride ion (F-) is one of the most hazardous elements in potable water. Over intake of F- can give rise to dental fluorosis, kidney failure, or DNA damage. As a result, developing affordable, equipment-free and credible approaches for F- detection is an important task. In this work, a new three dimensional rare earth cluster-based metal-organic framework assembled from lanthanide Y(III) ion, and a linear multifunctional ligand 3-nitro-4,4'-biphenyldicarboxylic acid, formulated as {[Y(μ3-OH)]4[Y(μ3-OH)(μ2-H2O)0.25(H2O)0.5]4[μ4-nba]8}n (1), where H2nba = 3-nitro-4,4'-biphenyldicarboxylic acid, has been hydrothermally synthesized and characterized through infrared spectroscopy (IR), elemental and thermal analysis (EA), power X-ray diffraction (PXRD), and single-crystal X-ray diffraction (SCXRD) analyses. X-ray diffraction structural analysis revealed that 1 crystallizes in tetragonal system with P4¯21m space group, and features a 3D framework with 1D square 18.07(3)2 Å2 channels running along the [0,0,1] or c-axis direction. The structure of 1 is built up of unusual eight-membered rings formed by two types of {Y4O4} clusters connected to each other via 12 μ4-nba2- and 4 μ3-OH- ligands. Three crystallographic independent Y3+ ions display two coordinated configurations with a seven-coordinated distorted monocapped trigonal-prism (YO7) and an eight-coordinated approximately bicapped trigonal-prism (YO8). 1 is further stabilized through O-H⋯O, O-H⋯N, C-H⋯O, and π⋯π interactions. Topologically, MOF 1 can be simplified as a 12-connected 2-nodal Au4Ho topology with a Schläfli symbol {420·628·818}{43}4 or a 6-connected uninodal pcu topology with a Schläfli symbol {412·63}. The fluorescent sensing application of 1 was investigated to cations and anions in H2O. 1 exhibits good luminescence probing turn-on recognition ability toward F- and with a limit detection concentration of F- down to 14.2 μM in aqueous solution (Kec = 11403 M-1, R2 = 0.99289, σ = 0.0539). The findings here provide a feasible detection platform of LnMOFs for highly sensitive discrimination of F- in aqueous media.
Collapse
Affiliation(s)
- Juan Li
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Airong Wang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Shiming Qiu
- College of Chemistry and Biological Engineering, Guangxi Minzu Normal University, Chongzuo 532200, China
| | - Xiaoli Wang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| | - Jiaming Li
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China
| |
Collapse
|
6
|
Yang XM, Wang AR, Li J, Huang PL, Lu ZF, Li SY, Li JM. Synthesis, crystal structures and fluorescence properties of two 1D Zn(II) homologous coordination polymers. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2023. [DOI: 10.1515/znb-2022-0139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Abstract
A pair of zinc(II)-based one-dimensional (1D) homologous coordination polymers, [Zn(Hdba)2(bib)]
n
(1) and [Zn(Hdba)2(bmib)]
n
(2), where H2dba = 3-hydroxybenzoic acid, bib = 1,4-bis(1-imidazolyl)benzene, and bmib = 1,4-bis(2-methyl-1H-imidazol-1-yl)benzene were hydrothermally synthesized and characterized through infrared spectroscopy (IR), elemental and thermal analysis (EA), powder X-ray diffraction (PXRD), and single-crystal X-ray diffraction (SCXRD) analyses. The results revealed that 1 and 2 have the same zigzag infinite chain framework through the partially deprotonated Hdba– monodentate linkage and with μ
2-bib bridging the Zn(II) atoms in 1, and with μ
2-bmib bridges for the Zn(II) atoms in 2. For both 1 and 2, each zinc atom has a slightly twisted tetrahedral configuration with a N2O2 donor set. These chains of 1 and 2 are further connected into three-dimensional (3D) supramolecular structures through O–H···O, C–H···O hydrogen bonds and π···π, C–H···π stacking interactions for 1, and O–H···O, C–H···O hydrogen bonds for 2. Topologically, the 3D hydrogen-bonded organic framework or the 2D π-stacking structure of 1 can be simplified as a 4-connected
dia Diamond
type with a Schläfli symbol {66}, or as a 4-connected
sql
type with a Schläfli symbol {44·62} and a Shubnikov tetragonal plane net. The thermal stability and the solid-state fluorescence properties of 1 and 2 were investigated.
Collapse
Affiliation(s)
- Xiao-Min Yang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University , Qinzhou , Guangxi , 535011 , P. R. China
| | - Ai-Rong Wang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University , Qinzhou , Guangxi , 535011 , P. R. China
| | - Juan Li
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University , Qinzhou , Guangxi , 535011 , P. R. China
| | - Pei-Lian Huang
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University , Qinzhou , Guangxi , 535011 , P. R. China
| | - Zhen-Feng Lu
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University , Qinzhou , Guangxi , 535011 , P. R. China
| | - Shu-Yan Li
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University , Qinzhou , Guangxi , 535011 , P. R. China
| | - Jia-Ming Li
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University , Qinzhou , Guangxi , 535011 , P. R. China
| |
Collapse
|
7
|
Xin Y, Zhou Y, Dong L, Wei P, Zou X, Zhang F, Li G. One-pot self-assembly synthesis of H3+xPMo12−xVxO40@[Cu6O(TZI)3(H2O)9(NO3)n]·(H2O)15 for enhanced proton conduction materials. NEW J CHEM 2022. [DOI: 10.1039/d1nj06090b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
One-pot self-assembly encapsulation of PMoVx in rht-MOF-1 affords enhanced the proton conduction material PMoVx@rht-MOF-1.
Collapse
Affiliation(s)
- Yuxiang Xin
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Yijia Zhou
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Longzhang Dong
- Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials, Jiangsu Key Laboratory of New Power Batteries, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Pengpeng Wei
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Xiaoyan Zou
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| | - Fengming Zhang
- School of Material Science and Chemical Engineering, Harbin University of Science and Technology, No. 4, Linyuan Road, Harbin 150040, P. R. China
| | - Guangming Li
- Key Laboratory of Functional Inorganic Material Chemistry (MOE), School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, P. R. China
| |
Collapse
|
8
|
Zhao L, Zhu RR, Wang S, He L, Du L, Zhao QH. Multiple Strategies to Fabricate a Highly Stable 2D Cu IICu I-Organic Framework with High Proton Conductivity. Inorg Chem 2021; 60:16474-16483. [PMID: 34657429 DOI: 10.1021/acs.inorgchem.1c02312] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Using multifunctional organic ligands with multiple acidic groups (carboxylate and sulfonate groups) to synthesize metal-organic frameworks (MOFs) bearing effective H-bond networks is a promising strategy to obtain highly proton conductive materials. In this work, a highly stable two-dimensional MOF, [CuII5CuI2(μ3-OH)4(H2O)6(L)2(H2L)2]·3H2O (denoted as YCu161; H3L = 6-sulfonaphthalene-1,4-dicarboxylic acid) containing mixed-valence [CuII5CuI2(μ3-OH)4]8+ subunits, was successfully prepared. It exhibited excellent stability and temperature- and humidity-dependent proton conduction properties. Its optimal proton conductivity reached 1.84 × 10-3 S cm-1 at 90 °C and 98% relative humidity. On the basis of a crystal structure analysis, water vapor adsorption test results, and activation energy calculations, we deduced the proton conduction pathway and mechanism. Apparently, uncoordinated sulfonic and carboxyl groups and a network of abundant H-bonds inside the framework were responsible for the efficient proton transfer. Therefore, the strategy of selecting suitable bifunctional ligands to construct two-dimensional Cu-cluster-based MOFs with excellent proton conductivity is feasible.
Collapse
Affiliation(s)
- Lijia Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Rong-Rong Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Shuyu Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Liancheng He
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Lin Du
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| | - Qi-Hua Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource Education Ministry, Yunnan University, Kunming 650091, Yunnan, People's Republic of China.,School of Chemical Science and Technology, Yunnan University, Kunming 650091, Yunnan, People's Republic of China
| |
Collapse
|
9
|
Two 2D Co(II)/Mn(II) coordination polymers based on the quinoline-2,3-dicarboxylate ligand: synthesis, crystal structure, and fluorescence properties. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2021-0106] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Abstract
A pair of two-dimensional (2D) isostructural coordination polymers (CPs), {[Co(2,3-qldc)(H2O)]}
n
(1) and {[Mn(2,3-qldc)(H2O)]}
n
(2), where 2,3-H2qldc = quinoline-2,3-dicarboxylic acid, were hydrothermally synthesized and characterized through IR spectroscopy, elemental and thermal analysis, power X-ray diffraction, and single-crystal X-ray diffraction. The results have revealed that the fully deprotonated 2,3-H2qldc ligand connects the Co(II)/Mn(II) atoms with a μ
3-bridge to form a square-wave 2D network, which is further extended into 3D stacks through O–H···O, C–H···O hydrogen bonds and π···π stacking interactions. Topologically, 1 or 2 can be simplified as a 4-connected
sql
type with a Schläfli symbol {44·62} and a Shubnikov tetragonal plane net, or as a 3-connected
fes
type with a Schläfli symbol {4·82} and a Shubnikov plane net. The thermal stability and the solid state fluorescence properties of 1 and 2 were investigated.
Collapse
|
10
|
Weng QY, Zhao YL, Li JM, Ouyang M. Construction of Two Stable Co(II)-Based Hydrogen-Bonded Organic Frameworks as a Luminescent Probe for Recognition of Fe 3+ and Cr 2O 72- in H 2O. Molecules 2021; 26:5955. [PMID: 34641498 PMCID: PMC8513017 DOI: 10.3390/molecules26195955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/21/2021] [Accepted: 09/29/2021] [Indexed: 11/16/2022] Open
Abstract
A pair of cobalt(II)-based hydrogen-bonded organic frameworks (HOFs), [Co(pca)2(bmimb)]n (1) and [Co2(pca)4(bimb)2] (2), where Hpca = p-chlorobenzoic acid, bmimb = 1,3-bis((2-methylimidazol-1-yl)methyl)benzene, and bimb = 1,4-bis(imidazol-1-ylmethyl)benzene were hydrothermally synthesized and characterized through infrared spectroscopy (IR), elemental and thermal analysis (EA), power X-ray diffraction (PXRD), and single-crystal X-ray diffraction (SCXRD) analyses. X-ray diffraction structural analysis revealed that 1 has a one-dimensional (1D) infinite chain network through the deprotonated pca- monodentate chelation and with a μ2-bmimb bridge Co(II) atom, and 2 is a binuclear Co(II) complex construction with a pair of symmetry-related pca- and bimb ligands. For both 1 and 2, each cobalt atom has four coordinated twisted tetrahedral configurations with a N2O2 donor set. Then, 1 and 2 are further extended into three-dimensional (3D) or two-dimensional (2D) hydrogen-bonded organic frameworks through C-H···Cl interactions. Topologically, HOFs 1 and 2 can be simplified as a 4-connected qtz topology with a Schläfli symbol {64·82} and a 4-connected sql topology with a Schläfli symbol {44·62}, respectively. The fluorescent sensing application of 1 was investigated; 1 exhibits high sensitivity recognition for Fe3+ (Ksv: 10970 M-1 and detection limit: 19 μM) and Cr2O72- (Ksv: 12960 M-1 and detection limit: 20 μM). This work provides a feasible detection platform of HOFs for highly sensitive discrimination of Fe3+ and Cr2O72- in aqueous media.
Collapse
Affiliation(s)
- Qi-Ying Weng
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China; (Q.-Y.W.); (Y.-L.Z.)
| | - Ya-Li Zhao
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China; (Q.-Y.W.); (Y.-L.Z.)
- College of International Studies, Beibu Gulf University, Qinzhou 535011, China
| | - Jia-Ming Li
- Guangxi Key Laboratory of Green Chemical Materials and Safety Technology, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, China; (Q.-Y.W.); (Y.-L.Z.)
| | - Miao Ouyang
- School of Chemical and Environmental Engineering, Hanshan Normal University, Chaozhou 521041, China
| |
Collapse
|