1
|
Liang S, Jensen MP. [Fe(NCMe) 6](BF 4) 2 is a bifunctional catalyst for styrene aziridination by nitrene transfer and heterocycle expansion by subsequent dipolar insertion. J Inorg Biochem 2024; 256:112551. [PMID: 38678911 DOI: 10.1016/j.jinorgbio.2024.112551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/24/2024] [Accepted: 04/04/2024] [Indexed: 05/01/2024]
Abstract
The solvated iron(II) salt [Fe(NCMe)6](BF4)2 (Me = methyl) is shown to be a bifunctional catalyst with respect to aziridination of styrene. The salt serves as an active catalyst for nitrene transfer from PhINTs to styrene to form 2-phenyl-N-tosylaziridine (Ph = phenyl; Ts = tosyl, -S{O}2-p-C6H4Me). The iron(II) salt also acts as a Lewis acid in non-coordinating CH2Cl2 solution, to catalyze heterolytic CN bond cleavage of the aziridine and insertion of dipolarophiles. The 1,3-zwitterionic intermediate is presumably supported by interaction of the metal dication with the anion, and by resonance stabilization of the carbocation. Nucleophilic dipolarophiles then insert to give a five-membered heterocyclic ring. The result is a two-step cycloaddition, formally [2 + 1 + 2], that is typically regiospecific, but not stereospecific. This reaction mechanism was confirmed by conducting a series of one-step, [3 + 2] additions of unsaturated molecules into pre-formed 2-phenyl-N-tosylaziridine, also catalyzed by [Fe(NCMe)6](BF4)2. Relevant substrates include styrenes, carbonyl compounds and alkynes. These yield five-membered heterocylic rings, including pyrrolidines, oxazolidines and dihydropyrroles, respectively. The reaction scope appears limited only by the barrier to formation of the dipolar intermediate, and by the nucleophilicity of the captured dipolarophile. The bifunctionality of an inexpensive, earth-abundant and non-toxic catalyst suggests a general strategy for one-pot construction of heterocyclic rings, as demonstrated specifically for pyrrolidine ring formation.
Collapse
Affiliation(s)
- Shengwen Liang
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA
| | - Michael P Jensen
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
2
|
Sahoo SK, Harfmann B, Ai L, Wang Q, Mohapatra S, Choudhury A, Stavropoulos P. Cationic Divalent Metal Sites (M = Mn, Fe, Co) Operating as Both Nitrene-Transfer Agents and Lewis Acids toward Mediating the Synthesis of Three- and Five-Membered N-Heterocycles. Inorg Chem 2023; 62:10743-10761. [PMID: 37352838 PMCID: PMC11531761 DOI: 10.1021/acs.inorgchem.3c01209] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2023]
Abstract
The tripodal compounds [(TMG3trphen)MII-solv](PF6)2 (M = Mn, Fe, Co; solv = MeCN, DMF) and bipodal analogues [(TMG2biphen)MII(NCMe)x](PF6)2 (x = 3 for Mn, Fe; x = 2 for Co) and [(TMG2biphen)MIICl2] have been synthesized with ligands that feature a triaryl- or diarylmethyl-amine framework and superbasic tetramethylguanidinyl residues (TMG). The dicationic M(II) sites mediate catalytic nitrene-transfer reactions between the imidoiodinane PhI═NTs (Ts = tosyl) and a panel of styrenes in MeCN to afford aziridines and low yields of imidazolines (upon MeCN insertion) with an order of productivity that favors the bipodal over the tripodal reagents and a metal preference of Fe > Co ≥ Mn. In CH2Cl2, the more acidic Fe(II) sites favor formation of 2,4-diaryl-N-tosylpyrrolidines by means of an in situ (3 + 2) cycloaddition of the initially generated 2-aryl-N-tosylaziridine with residual styrene. In the presence of ketone, 1,3-oxazolidines can be formed in practicable yields, involving a single-pot cycloaddition reaction of alkene, nitrene, and ketone (2 + 1 + 2). Mechanistic studies indicate that the most productive bipodal Fe(II) site mediates stepwise addition of nitrene to olefins to generate aziridines with good retention of stereochemistry and further enables aziridine ring opening to unmask a 1,3-zwitterion that can undergo cycloaddition with dipolarophiles (MeCN, alkene, ketone) to afford five-membered N-heterocycles.
Collapse
Affiliation(s)
- Suraj Kumar Sahoo
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Brent Harfmann
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Lin Ai
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- College of Chemistry, Beijing Normal University, Beijing 100875, People's Republic of China
| | - Qiuwen Wang
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Department of Medicinal Chemistry, BeiGene (Beijing) Company, Limited, Changping District, Beijing 102206, People's Republic of China
| | - Sudip Mohapatra
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Department of Chemistry, Kurseong College (affiliated under North Bengal University), Kurseong, Darjeeling, West Bengal PIN-734203, India
| | - Amitava Choudhury
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| | - Pericles Stavropoulos
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
3
|
Boullé A, Doumbia A, Mahy JP, Avenier F. Unprotected amine transfer performed by non-heme iron(II) complexes. Chem Commun (Camb) 2022; 59:79-81. [PMID: 36468296 DOI: 10.1039/d2cc04992a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Direct amination of C-H or CC bonds using unprotected amino groups is very challenging, especially with earth abundant metal ions. Here we show that a bioinspired iron(II) complex catalyses the double amination of its dangling benzyl branch in the presence of hydroxylamine derivatives as the unprotected amine donor and that the replacement of the benzyl branch by a methyl group also allows the aziridination of styrene.
Collapse
Affiliation(s)
- Alizée Boullé
- Laboratoire de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182), Université Paris-Saclay, 17, Avenue des Sciences, 91400 Orsay, France.
| | - Aminata Doumbia
- Laboratoire de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182), Université Paris-Saclay, 17, Avenue des Sciences, 91400 Orsay, France.
| | - Jean-Pierre Mahy
- Laboratoire de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182), Université Paris-Saclay, 17, Avenue des Sciences, 91400 Orsay, France.
| | - Frédéric Avenier
- Laboratoire de Chimie Bioorganique et Bioinorganique, Institut de Chimie Moléculaire et des Matériaux d'Orsay (UMR CNRS 8182), Université Paris-Saclay, 17, Avenue des Sciences, 91400 Orsay, France.
| |
Collapse
|
4
|
Mishra P, Shruti I, Kant R, Thakur TS, Kumar A, Rastogi N. Visible Light Organo‐Photocatalytic Synthesis of 3‐Imidazolines. European J Org Chem 2022. [DOI: 10.1002/ejoc.202201079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Poornima Mishra
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226 031 Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| | - Ipsha Shruti
- Biochemistry & Structural Biology Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226031 Lucknow India
| | - Ruchir Kant
- Biochemistry & Structural Biology Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226031 Lucknow India
| | - Tejender S. Thakur
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
- Biochemistry & Structural Biology Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226031 Lucknow India
| | - Akhilesh Kumar
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226 031 Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road 226 031 Lucknow India
- Academy of Scientific and Innovative Research (AcSIR) 201002 Ghaziabad India
| |
Collapse
|
5
|
Zhao Q, Yao QY, Zhang YJ, Xu T, Zhang J, Chen X. Selective Cyclopropanation/Aziridination of Olefins Catalyzed by Bis(pyrazolyl)borate Cu(I) Complexes. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Qianyi Zhao
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials Jianshe Road 453007 Xinxiang CHINA
| | - Qiu-Yue Yao
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Yan-Jiao Zhang
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Ting Xu
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Jie Zhang
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| | - Xuenian Chen
- Henan Normal University School of Chemistry and Chemical Engineering Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials CHINA
| |
Collapse
|
6
|
Coin G, Latour JM. Nitrene transfers mediated by natural and artificial iron enzymes. J Inorg Biochem 2021; 225:111613. [PMID: 34634542 DOI: 10.1016/j.jinorgbio.2021.111613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/30/2021] [Accepted: 09/13/2021] [Indexed: 12/19/2022]
Abstract
Amines are ubiquitous in biology and pharmacy. As a consequence, introducing N functionalities in organic molecules is attracting strong continuous interest. The past decade has witnessed the emergence of very efficient and selective catalytic systems achieving this goal thanks to engineered hemoproteins. In this review, we examine how these enzymes have been engineered focusing rather on the rationale behind it than the methodology employed. These studies are put in perspective with respect to in vitro and in vivo nitrene transfer processes performed by cytochromes P450. An emphasis is put on mechanistic aspects which are confronted to current molecular knowledge of these reactions. Forthcoming developments are delineated.
Collapse
Affiliation(s)
- Guillaume Coin
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, LCBM, pmb, F-38000 Grenoble, France; Univ. Grenoble Alpes, CNRS UMR 5250, DCM, CIRE, F-38000 Grenoble, France
| | - Jean-Marc Latour
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, DIESE, LCBM, pmb, F-38000 Grenoble, France.
| |
Collapse
|