1
|
Huang YT, Chang CC, Chang CL, Hsu WT, Li YR, Yang ZP, Lu CW, Su HC. Record-High Efficiency Blue-Green Cationic Ir(III) Complexes for Light-Emitting Electrochemical Cells with EQE Approaching 40. Inorg Chem 2025. [PMID: 40388199 DOI: 10.1021/acs.inorgchem.5c00167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Light-emitting electrochemical cells (LECs) provide a cost-effective solution for lighting applications and are well-suited for large-area and industrial-scale manufacturing. However, enhancing the efficiency of LECs remains a significant challenge. To address this issue, this study presents a series of blue-green iridium complexes with promising phosphorescent emission properties. Among these, di[1-(2,4-difluorophenyl)-pyrazolyl]-5,5'-difluoro-2,2'-bipyridyl iridium(III) hexafluorophosphate stands out, demonstrating exceptional performance. Following optimizing the device with varying thicknesses, an EQE of 16.8% and a current efficiency of 47.2 cd A-1 were attained. Further enhancements through the integration of a diffusive layer resulted in a 270% increase in efficiency, reaching an EQE of 39.3% and current efficiency of 109.6 cd A-1. This efficient technology demonstrates significant potential and lays the groundwork for future high-performance light-emitting devices.
Collapse
Affiliation(s)
- Yu-Ting Huang
- Department of Applied Chemistry, Providence University, Taichung 43301, Taiwan
| | - Chung-Chieh Chang
- Institute of Lighting and Energy Photonics, National Yang Ming Chiao Tung University, Tainan 71150, Taiwan
| | - Che-Lun Chang
- Department of Applied Chemistry, Providence University, Taichung 43301, Taiwan
| | - Wei-Tse Hsu
- Institute of Photonic System, National Yang Ming Chiao Tung University, Tainan 71150, Taiwan
| | - Yun-Rong Li
- Department of Applied Chemistry, Providence University, Taichung 43301, Taiwan
| | - Zu-Po Yang
- Institute of Photonic System, National Yang Ming Chiao Tung University, Tainan 71150, Taiwan
| | - Chin-Wei Lu
- Department of Applied Chemistry, Providence University, Taichung 43301, Taiwan
| | - Hai-Ching Su
- Institute of Lighting and Energy Photonics, National Yang Ming Chiao Tung University, Tainan 71150, Taiwan
| |
Collapse
|
2
|
Ramkissoon P, Armendariz-Vidales G, D'Alton L, Molino A, Agugiaro J, Wilson DJD, Hogan CF, Barnard PJ. Iridium(III) Complexes of Bifunctional 2-(2-Pyridyl)imidazole Ligands: Electrochemiluminescent Emitters in Aqueous Media. Inorg Chem 2024. [PMID: 39561212 DOI: 10.1021/acs.inorgchem.4c03121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
A series of electrochemiluminescent (ECL) iridium(III) complexes with the general formula [Ir(C∧N)2(pim)]+ (where C∧N = cyclometalating ligands 2-phenylpyridinato (ppy) or 2-(2,4-difluorophenyl)pyridinato (dFppy), and pim = 2-(2-pyridyl)imidazole) have been synthesized. In each case, the 2-(2-pyridyl)imidazole ancillary ligand has been modified to facilitate bioconjugation and ECL label development. All complexes exhibit blue-shifted optical and electro-generated phosphorescence relative to the archetypal complex [Ir(ppy)2(bpy)]+ (bpy = 2,2'-bipyridine). The emission energies for the complexes were unperturbed by functionalization of the imidazole unit of the pim ligand, whereas the emission energy was significantly blue-shifted when the pyridyl group was modified with an electron-donating oxyethanol unit. Cyclic voltammetric studies provide results consistent with fluorine substituents on the cyclometalating ligands, or an oxyethanol substituent on the neutral pim ligand, widening the highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO) gap of these complexes. Most of the complexes have high photoluminescence quantum yields (ΦPL) in acetonitrile (up to 0.91), and some have higher ECL efficiencies than [Ru(bpy)3]2+ in both acetonitrile (up to 177%) and ProCell buffer (up to 202%). Theoretical studies provide additional insights into the photophysical and electrochemical properties of this series of compounds.
Collapse
Affiliation(s)
- Pria Ramkissoon
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Georgina Armendariz-Vidales
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Laena D'Alton
- The Biomedical and Environmental Sensor Technology (BEST) Research Centre, Biosensors Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
| | - Andrew Molino
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Johnny Agugiaro
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - David J D Wilson
- Department of Biochemistry and Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne 3086, Victoria, Australia
| | - Conor F Hogan
- The Biomedical and Environmental Sensor Technology (BEST) Research Centre, Biosensors Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
| | - Peter J Barnard
- The Biomedical and Environmental Sensor Technology (BEST) Research Centre, Biosensors Program, La Trobe Institute for Molecular Science (LIMS), La Trobe University, Melbourne, Victoria 3086, Australia
| |
Collapse
|
3
|
Mishra S, Patra S. Aqueous emissive cyclometalated iridium photoreductants: synthesis, computational analysis and the photocatalytic reduction of 4-nitrophenol. Dalton Trans 2024; 53:8214-8222. [PMID: 38618673 DOI: 10.1039/d4dt00766b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024]
Abstract
Herein, we present luminescent mononuclear iridium complexes [1]3+-[4]3+ using NEt3-appended C^N chelating benzimidazole (L1-L4) and semi-flexible phenanthroline-pyrazine-based (phpy) ligands exhibiting photocatalytic reduction of 4-nitrophenol (4-NP) in the presence of NEt3 in an aqueous medium. The formation of [1]3+-[4]3+ was confirmed by HRMS, 1H-1H COSY, and 13C and 19F NMR spectroscopy. The complex [4]3+ is water soluble, whereas the others ([1]3+-[3]3+) are partially soluble. The complexes are luminescent in both CH3CN and H2O media. The DFT study reveals that the HOMO of [1]3+ resides on the C^N chelating benzimidazole and iridium center. However, it moves to the pyrazine-pyridine of the phpy unit in the case of [2]3+-[4]3+. The LUMOs are localized on the phenanthroline unit of phpy for all the complexes. This suggests an important role of the fluorine atom on electron density distribution. Spin density analysis demonstrates that the emission bands of the complexes arise from 3MLLCT states. The complex [4]3+ displays promising photocatalytic activity towards 4-NP photoreduction, whereas complexes [1]3+-[3]3+ exhibit lower reactivity. The mechanistic study suggests that the reaction proceeds through an oxidative quenching pathway, where 4-NP is reduced by accepting an electron from excited [Ir(III)] and gets oxidized to Ir(IV), which comes back to its original Ir(III) state by accepting an electron from the sacrificial electron donor NEt3.
Collapse
Affiliation(s)
- Saumyaranjan Mishra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni, Odisha-752050, India.
| | - Srikanta Patra
- School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Jatni, Odisha-752050, India.
| |
Collapse
|
4
|
Yi RH, Lee YH, Huang YT, Chen XJ, Wang YX, Luo D, Lu CW, Su HC. Cationic Ir(III) Complexes with 4-Fluoro-4'-pyrazolyl-(1,1'-biphenyl)-2-carbonitrile as the Cyclometalating Ligand: Synthesis, Characterizations, and Application to Ultrahigh-Efficiency Light-Emitting Electrochemical Cells. Inorg Chem 2024; 63:4828-4838. [PMID: 38447051 PMCID: PMC10951952 DOI: 10.1021/acs.inorgchem.3c03517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/24/2024] [Accepted: 01/30/2024] [Indexed: 03/08/2024]
Abstract
Light-emitting electrochemical cells (LECs) promise low-cost, large-area luminescence applications with air-stabilized electrodes and a versatile fabrication that enables the use of solution processes. Nevertheless, the commercialization of LECs is still encountering many obstacles, such as low electroluminescence (EL) efficiencies of the ionic materials. In this paper, we propose five blue to yellow ionic Ir complexes possessing 4-fluoro-4'-pyrazolyl-(1,1'-biphenyl)-2-carbonitrile (ppfn) as a novel cyclometalating ligand and use them in LECs. In particular, the device within di[4-fluoro-4'-pyrazolyl-(1,1'-biphenyl)-2-carbonitrile]-4,4'-di-tert-butyl-2,2'-bipyridyl iridium(III) hexafluorophosphate (DTBP) shows a remarkable photoluminescence quantum yield (PLQY) of 70%, and by adjusting the emissive-layer thickness, the maximal external quantum efficiency (EQE) reaches 22.15% at 532 nm under the thickness of 0.51 μm, showing the state-of-the-art value for the reported blue-green LECs.
Collapse
Affiliation(s)
- Rong-Huei Yi
- Department
of Applied Chemistry, Providence University, Taichung 43301, Taiwan
| | - Yi-Hsun Lee
- Institute
of Lighting and Energy Photonics, National
Yang Ming Chiao Tung University, Tainan 71150, Taiwan
| | - Yu-Ting Huang
- Department
of Applied Chemistry, Providence University, Taichung 43301, Taiwan
| | - Xuan-Jun Chen
- Institute
of Lighting and Energy Photonics, National
Yang Ming Chiao Tung University, Tainan 71150, Taiwan
| | - Yun-Xin Wang
- Department
of Applied Chemistry, Providence University, Taichung 43301, Taiwan
| | - Dian Luo
- Institute
of Lighting and Energy Photonics, National
Yang Ming Chiao Tung University, Tainan 71150, Taiwan
| | - Chin-Wei Lu
- Department
of Applied Chemistry, Providence University, Taichung 43301, Taiwan
| | - Hai-Ching Su
- Institute
of Lighting and Energy Photonics, National
Yang Ming Chiao Tung University, Tainan 71150, Taiwan
| |
Collapse
|
5
|
Zhou AH, Han T, Si PB, Liu XQ, Teng MY, Huang GL, Liu B, Wang Q, Zhang J. Synthesis and properties of a series of iridium complexes with naphthalenyl imidazo[2,1-b]thiazole derivatives as primary ligands. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2022.122596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Insight into luminescent iridium complexes: Their potential in Light-Emitting Electrochemical Cells. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101442] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
7
|
Diana R, Panunzi B. Zinc (II) and AIEgens: The "Clip Approach" for a Novel Fluorophore Family. A Review. Molecules 2021; 26:4176. [PMID: 34299451 PMCID: PMC8304007 DOI: 10.3390/molecules26144176] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022] Open
Abstract
Aggregation-induced emission (AIE) compounds display a photophysical phenomenon in which the aggregate state exhibits stronger emission than the isolated units. The common term of "AIEgens" was coined to describe compounds undergoing the AIE effect. Due to the recent interest in AIEgens, the search for novel hybrid organic-inorganic compounds with unique luminescence properties in the aggregate phase is a relevant goal. In this perspective, the abundant, inexpensive, and nontoxic d10 zinc cation offers unique opportunities for building AIE active fluorophores, sensing probes, and bioimaging tools. Considering the novelty of the topic, relevant examples collected in the last 5 years (2016-2021) through scientific production can be considered fully representative of the state-of-the-art. Starting from the simple phenomenological approach and considering different typological and chemical units and structures, we focused on zinc-based AIEgens offering synthetic novelty, research completeness, and relevant applications. A special section was devoted to Zn(II)-based AIEgens for living cell imaging as the novel technological frontier in biology and medicine.
Collapse
Affiliation(s)
| | - Barbara Panunzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|