1
|
Targhan H, Rezaei A, Aliabadi A, Ramazani A, Zhao Z, Shen X, Zheng H. Photocatalytic removal of imidacloprid pesticide from wastewater using CdS QDs passivated by CQDs containing thiol groups. Sci Rep 2024; 14:530. [PMID: 38177240 PMCID: PMC10766997 DOI: 10.1038/s41598-023-49972-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 12/14/2023] [Indexed: 01/06/2024] Open
Abstract
Over the past decade, CdS QDs have become versatile semiconductors. Surface modification of CdS QDs has become an interesting case study, as it can eliminate surface defects and improve their photochemical properties. In this study, we report a new strategy of using carbon quantum dots containing a large number of thiol groups (CQDs-SH) as a passivating agent for the stabilization of CdS quantum dots (QDs). Various characterization techniques have clearly revealed that the CdS QDs have been successfully passivated by CQDs-SH. The photocatalytic performance of CQDs-SH/CdS QDs was investigated for the degradation of the insecticide imidacloprid from an aqueous solution. Parameters affecting the photodegradation process, including the light source, photocatalyst amount, initial concentration of the pollutant, radiation time, pH, oxidizing agent, and temperature, were investigated. Furthermore, the HPLC technique was applied to quantitatively analyze imidacloprid and its degradation products. The results of the HPLC analysis revealed that under simulated visible light at pH 9, imidacloprid scarcely existed after 90 min of irradiation (90.13% degradation). The LC-MS method was also used to detect the degradation products and investigate the mechanism of photodegradation of the pesticide. The results showed that the CQDs-SH/CdS QDs composite was a promising photocatalyst for the degradation of imidacloprid in wastewater.
Collapse
Affiliation(s)
- Homa Targhan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Aram Rezaei
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Alireza Aliabadi
- Pharmaceutical Sciences Research Center, Health Institute, School of Pharmacy, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Ali Ramazani
- Department of Chemistry, University of Zanjan, Zanjan, 45371-38791, Iran.
| | - Zhefei Zhao
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xinyi Shen
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Huajun Zheng
- Department of Applied Chemistry, Zhejiang University of Technology, Hangzhou, 310032, China.
| |
Collapse
|
2
|
Li M, Wang L, Li F, Xu L. Construction of Co 3O 4 nanopolyhedra with rich oxygen vacancies from ZIF-67 for efficient photocatalytic nitrogen fixation. Photochem Photobiol Sci 2023:10.1007/s43630-023-00364-x. [PMID: 36652101 DOI: 10.1007/s43630-023-00364-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 01/04/2023] [Indexed: 01/19/2023]
Abstract
Photocatalytic nitrogen fixation has attracted much attention due to the fact that it is a way of using solar energy to achieve clean and sustainable conversion of nitrogen to ammonia under mild conditions. In this paper, different proportions of Zn-doped Co3O4 nanopolyhedrons were synthesized using bimetallic ZIFs containing Co2+ and Zn2+ as precursors for the construction of photocatalytic nitrogen fixation semiconductor materials for the first time. The synthesized Co3O4 nano-polyhedron still retains the rhombic dodecahedron shape of ZIF-67 and exhibits a large specific surface area. Moreover, Zn doping results in abundant oxygen vacancies on the surface of Co3O4 polyhedron. These oxygen vacancies not only provide active sites for nitrogen adsorption and activation, but also enhance the separation ability of photocarriers, which can significantly improve the efficiency of photocatalytic nitrogen fixation of the material. When Zn-Co3O4-30 is utilized as the catalyst for photocatalytic nitrogen fixation, the nitrogen fixation rate is 96.8 μmol g-1 h-1, which is much higher than that of pure-Co3O4. In this study, heteroatom-doped Co3O4 polyhedron with rich oxygen vacancy was synthesized by low-temperature oxidation method, which provides a new idea for the design and synthesis of skeleton-based photocatalytic nitrogen fixation materials.
Collapse
Affiliation(s)
- Mohan Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education College of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China
| | - Libo Wang
- Institute of Chemical and Industrial Bio-Engineering, Jilin Engineering Normal University, Changchun, 130052, Jilin, People's Republic of China
| | - Fengyan Li
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education College of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China.
| | - Lin Xu
- Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education College of Chemistry, Northeast Normal University, Changchun, 130024, People's Republic of China.
| |
Collapse
|
3
|
Chen L, Chen F, Ying S, Liang R, Yan G, Wang X, Xia Y. Ultrafast charge separation in a WC@C/CdS heterojunction enables efficient visible-light-driven hydrogen generation. Dalton Trans 2023; 52:290-296. [PMID: 36484709 DOI: 10.1039/d2dt03129a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The rapid recombination of photogenerated carriers and strong photocorrosion have considerably limited the practical application of CdS in the field of photocatalysis. Loading a cocatalyst has been widely utilized to largely enhance photocatalytic activity. In the present work, a WC@C cocatalyst was prepared by a novel molten salt method and explored as an efficient noble-metal-free cocatalyst to significantly enhance the photocatalytic hydrogen evolution rate of CdS nanorods. The WC@C/CdS composite photocatalyst with a 7 wt% content of WC@C showed the highest photocatalytic hydrogen evolution rate of 8.84 mmol g-1 h-1, which was about 21 and 31 times higher than those of CdS and 7 wt% Pt/CdS under visible light irradiation. A high apparent quantum efficiency (AQY) of 55.28% could be achieved under 420 nm monochromatic light. Furthermore, the photocatalytic activity of the 7 wt% WC@C/CdS photocatalyst exhibited good stability for 12 consecutive cycles of the photocatalytic experiment with a total reaction time of 42 h. The excellent photocatalytic performance of the photocatalyst was attributed to the formation of a Schottky junction and the loading cocatalyst, which not only accelerated the separation of the photogenerated carrier but also provided a reactive site for hydrogen evolution. This work revealed that WC@C could act as an excellent cocatalyst for enhancing the photocatalytic activity of CdS nanorods.
Collapse
Affiliation(s)
- Lu Chen
- Department of Chemistry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, PR China
| | - Feng Chen
- Department of Chemistry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, PR China
| | - Shaoming Ying
- Department of Chemistry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, PR China
| | - Ruowen Liang
- Department of Chemistry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, PR China
| | - Guiyang Yan
- Department of Chemistry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, PR China
| | - Xuxu Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University, Fuzhou 350002, PR China
| | - Yuzhou Xia
- Department of Chemistry, Fujian Province University Key Laboratory of Green Energy and Environment Catalysis, Ningde Normal University, Ningde 352100, PR China
| |
Collapse
|
4
|
Xiang D, Hao X, Yang X, Jin Z. Construction of Zn Vacancy mediated ZnS/Cu2-xS heterostructure via Cation Exchange Reactions for Broadband Photocatalytic Water Splitting. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
5
|
Tailoring of efficient electron-extracting system: S-scheme g-C3N4/CoTiO3 heterojunction modified with Co3O4 quantum dots for photocatalytic hydrogen evolution. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Xiang D, Hao X, Jin Z. Co 2P/CoP quantum dots surface heterojunction derived from amorphous Co 3O 4 quantum dots for efficient photocatalytic H 2 production. J Colloid Interface Sci 2022; 627:692-704. [PMID: 35878460 DOI: 10.1016/j.jcis.2022.07.102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 11/26/2022]
Abstract
Amorphous/crystalline heterostructures show excellent potential in the hydrogen evolution reaction (HER) as they can significantly facilitate surface adsorption and redox reactions. Herein, a unique amorphous Co2P/crystalline CoP quantum dots (Co2P/CoP QDs) Type-II surface heterojunction was derived from amorphous Co3O4 QDs via phosphorization. The intimate contact between Co2P QDs and CoP QDs was conducive to charge transfer, thereby promoting surface reaction kinetics. The unique structure and properties were beneficial to providing more active sites and controlling the electronic structures thus making amorphous/crystalline composites show superior photocatalytic hydrogen (H2) production performance. Additionally, the amorphous Co2P QDs had a plethora of unsaturated bonds and abundant defects; the disordered structure led to increased active sites that promoted surface reaction kinetics. Due to the synergistic effect of the quantum confinement of QDs and the surface heterojunction, the charge transfer efficiency of Co2P/CoP QDs was extremely high, and high H2 evolution activity and photostability were achieved. The maximum H2 generation rate over the Co2P/CoP QDs composite reached 11.88 mmol h-1 g-1 with an apparent quantum efficiency (AQE) of 3.88 % at 420 nm, which is roughly 20-times that of the pure Co3O4 QDs. In addition, high photostability was realized; even the photocatalyst that stood for a week reached initial photoactivity. This work offers a novel idea for reasonably establishing amorphous/crystalline photocatalysts to achieve efficient H2 evolution.
Collapse
Affiliation(s)
- Dingzhou Xiang
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, and Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China
| | - Xuqiang Hao
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, and Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
| | - Zhiliang Jin
- School of Chemistry and Chemical Engineering, Ningxia Key Laboratory of Solar Chemical Conversion Technology, and Key Laboratory for Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan 750021, PR China.
| |
Collapse
|
7
|
Wen H, Zhao W, Han X. Constructing Co 3O 4/La 2Ti 2O 7 p-n Heterojunction for the Enhancement of Photocatalytic Hydrogen Evolution. NANOMATERIALS 2022; 12:nano12101695. [PMID: 35630919 PMCID: PMC9145759 DOI: 10.3390/nano12101695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 11/16/2022]
Abstract
Layered perovskite-type semiconductor La2Ti2O7 has attracted lots of attention in photocatalytic hydrogen evolution, due to the suitable energy band position for water splitting, high specific surface area, and excellent physicochemical stability. However, the narrow light absorption range and the low separation efficiency of photogenerated carriers limit its photocatalytic activity. Herein, plate-like La2Ti2O7 with uniform crystal morphology was synthesized in molten NaCl salt. A p-n heterojunction was then constructed through the in situ hydrothermal growth of p-type Co3O4 nanoparticles on the surface of n-type plate-like La2Ti2O7. The effects of Co3O4 loading on photocatalytic hydrogen evolution performance were investigated in detail. The results demonstrate that composite Co3O4/La2Ti2O7 possesses much better photocatalytic activity than the pure component. The composite photocatalyst with 1 wt% Co3O4 exhibits the highest hydrogen evolution rate of 79.73 μmol·g-1·h-1 and a good cycling stability. The photoelectrochemistry characterizations illustrate that the improvement of photocatalytic activity is mainly attributed to both the enhanced light absorption from the Co3O4 ornament and the rapid separation of photogenerated electron-hole pairs driven by the built-in electric field close to the p-n heterojunction. The results may provide further insights into the design of high-efficiency La2Ti2O7-based heterojunctions for photocatalytic hydrogen evolution.
Collapse
|
8
|
Fang Y, Wang J, Liu Z, Zhao G, Huang Y, Hou J, Zhang G. Fabrication and enhanced photoelectric properties of a novel Bi 9O 7.5S 6/CdS composite film. Dalton Trans 2022; 51:17022-17029. [DOI: 10.1039/d2dt02931f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Bi9O7.5S6/CdS composite film with a type-II heterojunction was presented with a superior photoelectric response and photostability under visible-light irradiation.
Collapse
Affiliation(s)
- Yongzheng Fang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Jing Wang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Zhanqiang Liu
- Department of Materials Chemistry, Huzhou University, 759 East Erhuan Road, Huzhou 313000, P. R. China
| | - Guoying Zhao
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Yanwei Huang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Jingshan Hou
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| | - Ganghua Zhang
- School of Materials Science and Engineering, Shanghai Institute of Technology, Shanghai, 201418, P. R. China
| |
Collapse
|
9
|
Wang H, Liu H, Feng T, Wang L, Yuan W, Huang Q, Guo Y. Electronically modulated nickel boron by CeO x doping as a highly efficient electrocatalyst towards overall water splitting. Dalton Trans 2021; 51:675-684. [PMID: 34908068 DOI: 10.1039/d1dt03278j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Exploiting economic, efficient and durable non-noble metal electrocatalysts for the hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) is promising, but still faces enormous challenges. Herein, the strategy of doping a metal boride with a rare earth metal oxide has been explored to develop a highly efficient bifunctional electrocatalyst. The novel electrocatalyst CeOx-NiB consists of CeOx-doped NiB supported on nickel foam, and was fabricated by a one-step mild electroless plating reaction. Remarkably, the CeOx-NiB@NF electrode delivers a current density of 10 mA cm-2 at overpotentials of only 19 mV and 274 mV for the HER and OER, respectively. Two-electrode electrolyzers with the CeOx-NiB@NF electrode require only 1.424 V to deliver 10 mA cm-2 for overall water splitting in 1.0 M KOH, outperforming the Pt-C/NF∥IrO2/NF electrolyzer. Meanwhile, the electrode also has good stability (can work for 100 hours at 10 mA cm-2) and industrial-grade current density. This work provides a new idea for the development of efficient and durable non-precious metal catalysts.
Collapse
Affiliation(s)
- Huimin Wang
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai, 201209, P.R. China.
| | - Huixiang Liu
- Department of Materials Science, Fudan University, Shanghai, 200433, P.R. China.
| | - Tao Feng
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai, 201209, P.R. China.
| | - Lincai Wang
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai, 201209, P.R. China.
| | - Wenyi Yuan
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai, 201209, P.R. China.
| | - Qing Huang
- Shanghai Collaborative Innovation Centre for WEEE Recycling, Shanghai Polytechnic University, Shanghai, 201209, P.R. China.
| | - Yanhui Guo
- Department of Materials Science, Fudan University, Shanghai, 200433, P.R. China.
| |
Collapse
|
10
|
Hao W, Fan J, Xu X, Zhang Y, Lv H, Wang S, Deng S, Weng S, Guo Y. Sulfur doped FeO x nanosheet arrays supported on nickel foam for efficient alkaline seawater splitting. Dalton Trans 2021; 50:13312-13319. [PMID: 34608917 DOI: 10.1039/d1dt02506f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Developing economical, efficient and stable bifunctional catalysts for hydrogen production from seawater is of great significance for hydrogen utilization. Herein, sulfur doped iron oxide nanosheet arrays supported on nickel foam (FeOx-Ni3S2@NF) are prepared by a one-pot solvothermal reaction. Owing to the high intrinsic activity of FeOx-Ni3S2, the large catalytic specific surface area of nanosheet arrays and the fast charge transportation capability achieved by the self-supporting configuration, the FeOx-Ni3S2@NF electrode delivers excellent catalytic performance in alkaline simulated seawater (1 M KOH + 0.5 M NaCl). Impressively, a low overpotential of 120 mV at 50 mA cm-2 with a Tafel slope of 57 mV dec-1 for the hydrogen evolution reaction and an overpotential of 470 mV at 200 mA cm-2 with a Tafel slope of 62 mV dec-1 for the oxygen evolution reaction are achieved. More importantly, the voltage is only 1.5 V at 50 mA cm-2 for continuous overall water splitting for 100 h at 200 mA cm-2 with negligible decay in alkaline simulated seawater with almost 100% Faraday efficiency. This work provides a simple and universal strategy to prepare highly efficient bifunctional catalytic materials, promoting the development of Earth-abundant materials to catalyse seawater splitting to produce high-purity hydrogen.
Collapse
Affiliation(s)
- Weiju Hao
- University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Jinli Fan
- University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Xia Xu
- University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yiran Zhang
- University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Haiyang Lv
- University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Shige Wang
- University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Shengwei Deng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shuo Weng
- University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | - Yanhui Guo
- Fudan University, Shanghai 200433, P. R. China.
| |
Collapse
|