1
|
Shillito GE, Preston D, Crowley JD, Wagner P, Harris SJ, Gordon KC, Kupfer S. Controlling Excited State Localization in Bichromophoric Photosensitizers via the Bridging Group. Inorg Chem 2024; 63:4947-4956. [PMID: 38437618 PMCID: PMC10951951 DOI: 10.1021/acs.inorgchem.3c04110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/18/2024] [Accepted: 01/30/2024] [Indexed: 03/06/2024]
Abstract
A series of photosensitizers comprised of both an inorganic and an organic chromophore are investigated in a joint synthetic, spectroscopic, and theoretical study. This bichromophoric design strategy provides a means by which to significantly increase the excited state lifetime by isolating the excited state away from the metal center following intersystem crossing. A variable bridging group is incorporated between the donor and acceptor units of the organic chromophore, and its influence on the excited state properties is explored. The Franck-Condon (FC) photophysics and subsequent excited state relaxation pathways are investigated with a suite of steady-state and time-resolved spectroscopic techniques in combination with scalar-relativistic quantum chemical calculations. It is demonstrated that the presence of an electronically conducting bridge that facilitates donor-acceptor communication is vital to generate long-lived (32 to 45 μs), charge-separated states with organic character. In contrast, when an insulating 1,2,3-triazole bridge is used, the excited state properties are dominated by the inorganic chromophore, with a notably shorter lifetime of 60 ns. This method of extending the lifetime of a molecular photosensitizer is, therefore, of interest for a range of molecular electronic devices and photophysical applications.
Collapse
Affiliation(s)
- Georgina E. Shillito
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Dan Preston
- Research
School of Chemistry, Australian National
University, Canberra, ACT 2600, Australia
| | - James D. Crowley
- Department
of Chemistry, University of Otago, 362 Leith Street, Dunedin 9016, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington, 6012, New Zealand
| | - Pawel Wagner
- University
of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia
| | - Samuel J. Harris
- Department
of Chemistry, University of Otago, 362 Leith Street, Dunedin 9016, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington, 6012, New Zealand
| | - Keith C. Gordon
- Department
of Chemistry, University of Otago, 362 Leith Street, Dunedin 9016, New Zealand
- MacDiarmid
Institute for Advanced Materials and Nanotechnology, Wellington, 6012, New Zealand
| | - Stephan Kupfer
- Institute
of Physical Chemistry, Friedrich Schiller
University Jena, Helmholtzweg 4, 07743 Jena, Germany
| |
Collapse
|
2
|
Gitlina AY, Khistiaeva V, Melnikov A, Ivonina M, Sizov V, Spiridonova D, Makarova A, Vyalikh D, Grachova E. Organometallic Ir(III) complexes: post-synthetic modification, photophysical properties and binuclear complex construction. Dalton Trans 2023. [PMID: 37334469 DOI: 10.1039/d3dt00901g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Two methods of post-synthetic modification (Suzuki coupling and CuAAC click-reaction) were applied to Ir(III) complexes [Ir(C^N)2N^N]+ to provide the second highly selective donor site. One family of functionalized complexes was used to demonstrate the potential of post-synthetic modification for controlled construction of d-d and d-f binuclear complexes. The complexes obtained were characterized by CHN elemental analysis, NMR spectroscopy, ESI mass-spectrometry, FTIR spectroscopy and single crystal X-ray diffraction analysis. By means of XPS and NEXAFS spectroscopy the coordination of diimine donor site to the Ln(III) centre has been definitely confirmed. The photophysical properties of mono- and binuclear complexes were carefully investigated, and the evolution of luminescent characteristics during the formation of a system of connected metallocenters is also discussed. TDDFT calculations were used to describe the luminescence mechanism and to confirm the conclusions made on the basis of experimental data.
Collapse
Affiliation(s)
- Anastasia Yu Gitlina
- Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Viktoria Khistiaeva
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| | - Alexey Melnikov
- Centre for Nano- and Biotechnologies, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Mariia Ivonina
- Department of Material Sciences, Faculty of Engineering Sciences, Kyushu University, Kasuga, Fukuoka 816-8580, Japan
| | - Vladimir Sizov
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| | - Dar'ya Spiridonova
- Centre for X-ray Diffraction Studies, St Petersburg University, 199034 St. Petersburg, Russia
| | - Anna Makarova
- Physikalische Chemie, Institut für Chemie und Biochemie, Freie Universität Berlin, 14195 Berlin, Germany
| | - Denis Vyalikh
- Donostia International Physics Center (DIPC), 20018 Donostia-San Sebastián, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Elena Grachova
- Institute of Chemistry, St Petersburg University, Universitetskii pr. 26, 198504 St. Petersburg, Russia.
| |
Collapse
|
3
|
Dinuclear Reactivity of One Metal Exalted by the Second One. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2022_80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
4
|
Inagaki A. Development of Metal Complexes to Utilize Visible-Light Energy into Molecular Transformation. J SYN ORG CHEM JPN 2022. [DOI: 10.5059/yukigoseikyokaishi.80.489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Akiko Inagaki
- Department of Chemistry, Tokyo Metropolitan University
| |
Collapse
|