1
|
Kumari M, Dasgupta S, Panda S, Bera SK, Datta A, Lahiri GK. Unique Metal-Ligand Interplay in Directing Discrete and Polymeric Derivatives of Isomeric Azole-Carboxylate. Varying Electronic Form, C-C Coupling, and Receptor Feature. Inorg Chem 2023; 62:7779-7794. [PMID: 37163348 DOI: 10.1021/acs.inorgchem.3c00418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
This article dealt with the ruthenium and osmium derivatives of isomeric 1H-indazole-3-carboxylic acid/2H-indazole-3-carboxylic acid (H2L1) and 1H-benzimidazole-2-carboxylic acid (H2L2) along with the π-acidic bpy (bpy = 2,2'-bipyridine) and pap (pap = 2-phenylazopyridine) co-ligands. It thus extended structurally authenticated monomeric ([(bpy)2RuII(HL1-)]ClO4 [1]ClO4, (pap)2RuII(L12-) 2, (bpy)2OsII(L12-) 3, (pap)2OsII(L12-) 4, (bpy)2RuII(L22-) 5, (bpy)2OsII(L22-) 8, and (pap)2OsII(L22-) 9) and dimeric ([(bpy)2RuII(μ-L22-)RuII(bpy)2](ClO4)2 [6](ClO4)2) complexes. It also described modified L2'2- (L2'2- = 2,2'-bisbenzimidazolate)-bridged [(pap)2RuII(μ-L2'2-)RuII(pap)2](ClO4)2 [7](ClO4)2, where L2'2- was developed selectively with the {Ru(pap)2} metal fragment via in situ intermolecular C-C coupling of the two units of decarboxylated benzimidazolate. Moreover, chemical oxidation (OsII to OsIII) of (bpy)2OsII(L12-) 3 (E0 = 0.11 V versus SCE) and (bpy)2OsII(L22-) 8 (E0 = 0.12 V versus SCE) by AgClO4 yielded unprecedented OsIII-AgI derived polymeric {[(bpy)2OsIII-L12--AgI(CH3CN)](ClO4)2}n {[10](ClO4)2}n and dimeric [(bpy)2OsIII-L22--AgI(CH3CN)](ClO4)2 [11](ClO4)2 complexes as a function of trans and cis orientations of the active N2 donor with special reference to the carboxylate O2 of L2-, respectively. Microscopic (FE-SEM, TEM-EDX, and AFM) and DLS experiments suggested a homogeneously dispersed hollow spherical shaped morphology of {[10](ClO4)2}n with an average particle size of 200-400 nm as well as its non-dissociative feature in the aprotic medium. Experimental (structure, spectroscopy, and electrochemistry) and theoretical (DFT/TD-DFT) explorations revealed a redox non-innocent feature of L2- in the present coordination situations and the selective anion sensing (X = F-, CN-, and OAc-) event of [1]ClO4 involving a free NH group at the backface of HL1-, which proceeded via the NH···X hydrogen bonding interaction.
Collapse
Affiliation(s)
- Maya Kumari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Souradip Dasgupta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjib Panda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sudip Kumar Bera
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Anindya Datta
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
2
|
Kumari M, Dey K, Bera SK, Lahiri GK. Indazole-Derived Mono-/Diruthenium and Heterotrinuclear Complexes: Switchable Binding Mode, Electronic Form, and Anion Sensing Events. Inorg Chem 2022; 61:16122-16140. [PMID: 36149433 DOI: 10.1021/acs.inorgchem.2c02628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The article deals with the newer classes of mononuclear: [(acac)2RuIII(H-Iz)(Iz-)] 1, [(acac)2RuIII(H-Iz)2]ClO4 [1]ClO4/[1']ClO4, and [(bpy)2RuII(H-Iz)(Iz-)]ClO4 [2]ClO4, mixed-valent unsymmetric dinuclear: [(acac)2RuIII(μ-Iz-)2RuII(bpy)2]ClO4 [3]ClO4, and heterotrinuclear: [(acac)2RuIII(μ-Iz-)2MII(μ-Iz-)2RuIII(acac)2] (M = Co:4a, Ni:4b, Cu:4c, and Zn:4d) complexes (H-Iz = indazole, Iz- = indazolate, acac = acetylacetonate, and bpy = 2,2'-bipyridine). Structural characterization of all the aforestated complexes established their molecular identities including varying binding modes (Na and Nb donors and 1H-indazole versus 2H-indazole) of the heterocyclic H-Iz/Iz- in the complexes. Unlike [1']ClO4 containing two NH protons at the backface of H-Iz units, the corresponding [1]ClO4 was found to be unstable due to the deprotonation of its positively charged quaternary nitrogen center, and this resulted in the eventual formation of the parent complex 1. A combination of experimental and density functional theory calculations indicated the redox noninnocent feature of Iz- in the complexes along the redox chain. The absence of intervalence charge transfer transition in the near-infrared region of the (Iz-)2-bridged unsymmetric mixed-valent RuIIIRuII state in [3]ClO4 suggested negligible intramolecular electronic coupling corresponding to a class I setup (Robin and Day classification). Heterotrinuclear complexes (4a-4d) exhibited varying spin configurations due to spin-spin interactions between the terminal Ru(III) ions and the central M(II) ion. Though both [3]ClO4 and 4a-4d displayed ligand (Iz-/Iz•)-based oxidation, reductions were preferentially taken place at the bpy and metal (RuIII/RuII) centers, respectively. Unlike 1 or [2]ClO4 containing one free NH proton at the backface of H-Iz, [1']ClO4 with two H-Iz units could selectively and effectively recognize F-, OAc-, and CN- among the tested anions: F-, OAc-, CN-, Cl-, Br-, I-, SCN-, HSO4-, and Η2PΟ4- in CH3CN via intermolecular NH···anion hydrogen bonding interaction. The difference in the sensing feature between [1']ClO4 and 1/[2]ClO4 could be rationalized by their pKa values of 8.4 and 11.3/10.8, respectively.
Collapse
Affiliation(s)
- Maya Kumari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Krishnendu Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Sudip Kumar Bera
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India
| |
Collapse
|
3
|
Dhara S, Dey S, Panda S, Lahiri GK. On the Question of S-S Bond Cleavage of 2,2'-Dithiodipyridine on Selective Ru and Os Platforms. MLCT or Hydride or Solvent Mediated Event. Inorg Chem 2022; 61:14297-14312. [PMID: 36044731 DOI: 10.1021/acs.inorgchem.2c01866] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This article deals with the S-S bond scission of the model substrate 2,2'-dithiodipyridine (DTDP) in the presence of a selective set of metal precursors: RuII(acac)2, [RuIICl2(PPh3)3], [RuIIHCl(CO)(PPh3)3], [RuII(H)2(CO)(PPh3)3], [RuII(bpy)2Cl2], [RuII(pap)2Cl2], [OsII(bpy)2Cl2], and [OsII(pap)2Cl2] (acac, acetylacetonate; bpy, 2,2'-bipyridine; pap, 2-phenylazopyridine). This led to the eventual formation of the corresponding mononuclear complexes containing the cleaved pyridine-2-thiolate unit in 1-4/[5]ClO4-[8]ClO4. The formation of the complexes was ascertained by their single-crystal X-ray structures, which also established sterically constrained four-membered chelate (average N1-M-S1 angle of 67.89°) originated from the in situ-generated pyridine-2-thiolate unit. Ruthenium(III)-derived one-electron paramagnetic complexes 1-2 (S = 1/2, magnetic moment/B.M. = 1.82 (1)/1.81(2)) exhibited metal-based anisotropic electron paramagnetic resonance (EPR) (Δg: 1/2 = 0.64/0.93, ⟨g⟩: 1/2 = 2.173/2.189) and a broad 1H nuclear magnetic resonance (NMR) signature due to the contact shift effect. The spectroelectrochemical and electronic structural aspects of the complexes were analyzed experimentally in combination with theoretical calculations of density functional theory (DFT and TD-DFT). The unperturbed feature of DTDP even in refluxing ethanol over a period of 10 h can be attributed to the active participation of the metal fragments in facilitating S-S bond cleavage in 1-4/[5]ClO4-[8]ClO4. It also revealed the following three probable pathways toward S-S bond cleavage of DTDP as a function of metal precursors: (i) the metal-to-ligand charge-transfer (MLCT) (RuII → σ* of DTDP)-driven metal oxidation (RuII → RuIII) process in the case of relatively electron-rich metal fragments {RuII(acac)2} or RuIICl2 in 1 or 2, respectively; (ii) metal hydride-assisted formation of 3 or 4 with the concomitant generation of H2; and (iii) S-S bond reduction with the simultaneous oxidation of the solvent benzyl alcohol to benzaldehyde.
Collapse
Affiliation(s)
- Suman Dhara
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanchaita Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Sanjib Panda
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
4
|
Arya Y, Bera SK, Priego JL, Jiménez-Aparicio R, Lahiri GK. Bidirectional noninnocence of hinge-like deprotonated bis-lawsone on selective ruthenium platform: a function of varying ancillary ligands. Dalton Trans 2022; 51:10441-10456. [PMID: 35762823 DOI: 10.1039/d2dt01466a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The present work aimed to obtain discrete heavier metal complexes of unperturbed deprotonated bis-lawsone (hinge-like H2L = 2,2'-bis(3-hydroxy-1,4-napthoquinone). This is primarily due to its limited examples with lighter metal ions (Co, Zn, and Ga) and the fact that our earlier approach with the osmium ion facilitated its functionalisation. Herein, we demonstrated the successful synthesis and structural characterisation of L2--derived diruthenium [(bpy)2RuII(μ-L2-)RuII(bpy)2](ClO4)2 [1](ClO4)2 (S = 0), (acac)2RuIII(μ-L2-)RuIII(acac)22 (S = 1) and monoruthenium (pap)2Ru(L2-) 3 (S = 0) derivatives (bpy = 2,2'-bipyridine, acac = acetylacetonate, and pap = 2-phenylazopyridine). The crystal structures established that (i) O,O-/O,O- donating five-membered bis-bidentate and O-,O- donating seven-membered bidentate chelating modes of deprotonated L2- in rac (ΔΔ/ΛΛ) diastereomeric [1](ClO4)2, 2 and 3, respectively. (ii) The L2- bridging unit in [1](ClO4)2, 2 and 3 underwent twisting its two naphthoquinone rings with respect to the ring connecting C-C bond by 73.01°, 62.15° and 59.12°, respectively. (iii) Intermolecular π-π interactions (∼3.5 Å) between the neighbouring molecules. The paramagnetic complex 2 (S = 1) with two non-interacting Ru(III) (S = 1/2) ions exhibited weak antiferromagnetic coupling only at very low temperatures. In agreement with the magnetic results, 2 displayed typical RuIII-based anisotropic EPR in CH3CN (<g>/Δg: 2.314/0.564) but without any forbidden g1/2 signal at 120 K. The complexes exhibited multiple redox processes in CH3CN in the experimental potential window of ± 2.0 V versus SCE. The analysis of the redox steps via a combined experimental and theoretical (DFT/TD-DFT) approach revealed the involvement of L2- to varying extents in both the oxidative and reductive processes as a consequence of its bidirectional redox non-innocent feature. The mixing of the frontier orbitals of the metal ion and L2- due to their closeness in energy indeed led to the resonating electronic form in certain redox states instead of any precise electronic structural state.
Collapse
Affiliation(s)
- Yogita Arya
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - Sudip Kumar Bera
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| | - José Luis Priego
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain
| | - Reyes Jiménez-Aparicio
- Departamento de Química Inorgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Ciudad Universitaria, E-28040 Madrid, Spain
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|