1
|
Hu X, Zhao M, Zhang R. New Insight into Visible-Light-Driven Photocatalytic Activity of Ag-Loaded and Oxygen Vacancy-Containing BiOBr (OV)/BiOI 0.08 Microspheres. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6297. [PMID: 39769895 PMCID: PMC11678820 DOI: 10.3390/ma17246297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 11/29/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025]
Abstract
A series of Ag-loaded and oxygen vacancy (OV)-containing BiOBr(OV)/BiOI0.08 (Ag/BiOBr(OV)/BiOI0.08) photocatalysts with varying Ag loading levels were synthesized via the solvothermal-photocatalytic reduction method. As confirmed via optical, photoelectrochemical, and 4-chlorophenol photodegradation experiments, a low Ag loading level significantly enhanced the photogenerated charge carrier (PCC) transfer on the BiOBr(OV)/BiOI0.08 semiconductor surface and the performance of Ag/BiOBr(OV)/BiOI0.08 photocatalysts, which was attributable to the synergism between the effect of OVs and the localized surface plasmon resonance (LSPR) of Ag nanoparticles. Additionally, BiOBr(OV)/BiOI heterojunctions facilitated efficient visible-light harvesting and PCC separation. As indicated by finite-difference time-domain (FDTD) simulations and density functional theory (DFT) calculations, the electric field intensity in the "hot spots" generated at the interface between the BiOBr(OV)/BiOI0.08 semiconductor and Ag nanoparticles increased by more than eight times, and the presence of OVs and Ag atomic clusters introduced impurity energy levels in the semiconductor bandgap, improving PCC separation and Ag/BiOBr(OV)/BiOI0.08 photocatalytic efficiency. However, an increase in silver loading renders the composite metallic, suggesting a reduction in its photocatalytic performance. This work provides new insights for designing highly active visible light catalysts and contributes to the development of more efficient plasmonic catalysts.
Collapse
Affiliation(s)
- Xiaobin Hu
- School of Life Science, Huzhou University, Huzhou 313000, China
| | | | | |
Collapse
|
2
|
Bernal-Díaz A, Hernández-Gordillo A, Alonso JC, Rodil SE, Bizarro M. Strong thickness dependence in thin film photocatalytic heterojunctions: the ZnO-Bi 2O 3 case study. Dalton Trans 2024; 53:7081-7092. [PMID: 38567490 DOI: 10.1039/d4dt00697f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Semiconductor heterojunctions are an effective way to achieve efficient photocatalysts, as they can provide an adequate redox potential with visible light excitation. Several works have reported synergistic effects with nanoparticle semiconductor materials. The question is still open for thin film heterojunctions formed by stacked layers, as photocatalysis is considered a surface phenomenon. To investigate if the internal layer really affects or modifies the photocatalytic properties of the external material, we analyze the thin film heterojunction with ZnO and Bi2O3 semiconductors deposited by spray pyrolysis in two configurations: substrate/ZnO/Bi2O3 and substrate/Bi2O3/ZnO. Microstructural analysis was performed to verify the formation of the physical junction of the materials and discard new ternary phases. The photocatalytic activity was analyzed as a function of the thickness of the layers under blue light irradiation. We determined the conduction and valence bands positions, the carrier concentrations, mobilities, Fermi levels, etc. that allowed us to distinguish two reaction mechanisms depending on the configuration. There is a strong compromise between the order and thickness of the layers with the photocatalytic activity. The internal electric field produced in the interface defines the route of the photogenerated charges, and therefore the photocatalytic response. Thus, well-designed thin film heterojunctions can indeed improve the photocatalytic activity of the surface layer.
Collapse
Affiliation(s)
- Alberto Bernal-Díaz
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Cd. Universitaria, Coyoacán, Mexico City, 04510, Mexico.
| | - Agileo Hernández-Gordillo
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Cd. Universitaria, Coyoacán, Mexico City, 04510, Mexico.
| | - Juan Carlos Alonso
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Cd. Universitaria, Coyoacán, Mexico City, 04510, Mexico.
| | - Sandra E Rodil
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Cd. Universitaria, Coyoacán, Mexico City, 04510, Mexico.
| | - Monserrat Bizarro
- Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Cd. Universitaria, Coyoacán, Mexico City, 04510, Mexico.
| |
Collapse
|
3
|
Zhang B, Meng Q, Lei Y, Wu G, Xu J, Meng X, Wu J, Hou H. Highly porous BiOBr@NU-1000 Z-scheme heterojunctions for synergistic efficient adsorption and photocatalytic degradation of tetracycline. Dalton Trans 2023; 52:17854-17860. [PMID: 37975215 DOI: 10.1039/d3dt02963h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Designing an effective photoactive heterojunction having dual benefits towards photoenergy conversion and pollutant adsorption is regarded as an affordable, green method for eliminating tetracycline (TC) from wastewater. In this regard, a series of BiOBr@NU-1000 (BNU-X, X = 1, 2 and 3) heterojunction photocatalysts are constructed. BNU-X preserves the original skeleton structure of the parent NU-1000, and its high porosity and specific surface area enable superior TC adsorption. At the same time, BNU-X is an effective Z-scheme photocatalyst that improves light trapping, promotes photoelectron-hole separation, and shows excellent photocatalytic degradation efficiency towards TC with the value of the photodegradation kinetic rate constant k being 2.2 and 24.8 times those of NU-1000 and BiOBr, respectively. The significant increase in the photocatalytic activity is ascribed to the construction of an efficient Z-scheme photocatalyst, which promotes the formation of superoxide radicals (˙O2-) and singlet oxygen (1O2) as the main oxidative species in the oxidation system. This research has the advantage of possibilities for the development of porous Z-scheme photocatalysts based on photoactive MOF materials and inorganic semiconductors for the self-purification and photodegradation of organic contaminants.
Collapse
Affiliation(s)
- Bin Zhang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
| | - Qing Meng
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
| | - Ying Lei
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
| | - Gaigai Wu
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
| | - Jinghan Xu
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
| | - Xiangru Meng
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
| | - Jie Wu
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
| | - Hongwei Hou
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China.
| |
Collapse
|
4
|
Cai Z, Lei S, Hu Y, Chen Y, Shen M, Lei M. Iron doped BiOBr loaded on carbon spheres for improved visible-light-driven detoxification of 2-chloroethyl sulfide. Dalton Trans 2023; 52:3040-3051. [PMID: 36779551 DOI: 10.1039/d2dt03666e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In this study, flower-like porous iron doped bismuth oxybromide on porous activated carbon visible light catalysts (BiOBr/Fe@AC) were prepared by a reactive imidazole ionic liquid surfactant assisted solvothermal process. The morphologies, structures, optical properties and photocatalytic properties were investigated in detail. The morphology of the synthesized Fe doped BiOBr composites gradually changed from a regular spherical shape to a non-specific shape with the increase of the alkyl chain length of the ionic liquid surfactants. The photocurrent of BiOBr/Fe@AC composites is greatly influenced by the content of Fe, the type of carbon sphere and the size of the composites. The photocatalytic activity of the obtained BiOBr/Fe@AC composites was evaluated by the degradation of 2-chloroethyl sulfide (CEES) under visible light. The BiOBr/Fe@AC composites exhibited significantly enhanced photocatalytic performance compared to that of pure BiOBr and the 10.0% Fe doped BiOBr/Fe@AC composite displayed the highest photocatalytic activity. The main active species were determined to be holes and superoxide radicals by electron spin resonance (ESR) analysis and free radical trapping experiments. The introduction of iron can improve the separation and transfer rate of photoinduced charges. Carbon spheres can enhance light harvesting, improve electron transfer and increase the number of catalytic active sites. Iron and carbon embellishment is an effective strategy to enhance the photocatalytic efficiency of BiOBr. Finally, a possible photocatalytic mechanism of BiOBr/Fe@AC has been proposed.
Collapse
Affiliation(s)
- Zixian Cai
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, P. R. China. .,School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
| | - Shaoan Lei
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
| | - Yimin Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
| | - Yu Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
| | - Ming Shen
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
| | - Meiling Lei
- State Key Laboratory of NBC Protection for Civilian, Beijing, 102205, P. R. China.
| |
Collapse
|