1
|
Wang Y, Li L, Wang S, Dong X, Ding C, Mu Y, Cui M, Hu T, Meng C, Zhang Y. Anion Structure Regulation of Cobalt Silicate Hydroxide Endowing Boosted Oxygen Evolution Reaction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401394. [PMID: 38709222 DOI: 10.1002/smll.202401394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/12/2024] [Indexed: 05/07/2024]
Abstract
Transition metal silicates (TMSs) are attempted for the electrocatalyst of oxygen evolution reaction (OER) due to their special layered structure in recent years. However, defects such as low theoretical activity and conductivity limit their application. Researchers always prefer to composite TMSs with other functional materials to make up for their deficiency, but rarely focus on the effect of intrinsic structure adjustment on their catalytic activity, especially anion structure regulation. Herein, applying the method of interference hydrolysis and vacancy reserve, new silicate vacancies (anionic regulation) are introduced in cobalt silicate hydroxide (CoSi), named SV-CoSi, to enlarge the number and enhance the activity of catalytic sites. The overpotential of SV-CoSi declines to 301 mV at 10 mA cm-2 compared to 438 mV of CoSi. Source of such improvement is verified to be not only the increase of active sites, but also the positive effect on the intrinsic activity due to the enhancement of cobalt-oxygen covalence with the variation of anion structure by density functional theory (DFT) method. This work demonstrates that the feasible intrinsic anion structure regulation can improve OER performance of TMSs and provides an effective idea for the development of non-noble metal catalyst for OER.
Collapse
Affiliation(s)
- Yang Wang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Longmei Li
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Shengguo Wang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Xueying Dong
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Chongtao Ding
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Yang Mu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
- College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China
| | - Miao Cui
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Tao Hu
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| | - Changgong Meng
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
- College of Environmental and Chemical Engineering, Dalian University, Dalian, 116622, China
| | - Yifu Zhang
- School of Chemistry, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
2
|
Onajah S, Sarkar R, Islam MS, Lalley M, Khan K, Demir M, Abdelhamid HN, Farghaly AA. Silica-Derived Nanostructured Electrode Materials for ORR, OER, HER, CO 2RR Electrocatalysis, and Energy Storage Applications: A Review. CHEM REC 2024; 24:e202300234. [PMID: 38530060 DOI: 10.1002/tcr.202300234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 02/13/2024] [Indexed: 03/27/2024]
Abstract
Silica-derived nanostructured catalysts (SDNCs) are a class of materials synthesized using nanocasting and templating techniques, which involve the sacrificial removal of a silica template to generate highly porous nanostructured materials. The surface of these nanostructures is functionalized with a variety of electrocatalytically active metal and non-metal atoms. SDNCs have attracted considerable attention due to their unique physicochemical properties, tunable electronic configuration, and microstructure. These properties make them highly efficient catalysts and promising electrode materials for next generation electrocatalysis, energy conversion, and energy storage technologies. The continued development of SDNCs is likely to lead to new and improved electrocatalysts and electrode materials. This review article provides a comprehensive overview of the recent advances in the development of SDNCs for electrocatalysis and energy storage applications. It analyzes 337,061 research articles published in the Web of Science (WoS) database up to December 2022 using the keywords "silica", "electrocatalysts", "ORR", "OER", "HER", "HOR", "CO2RR", "batteries", and "supercapacitors". The review discusses the application of SDNCs for oxygen reduction reaction (ORR), oxygen evolution reaction (OER), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CO2RR), supercapacitors, lithium-ion batteries, and thermal energy storage applications. It concludes by discussing the advantages and limitations of SDNCs for energy applications.
Collapse
Affiliation(s)
- Sammy Onajah
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, 60439, United States
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
| | - Rajib Sarkar
- Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia, 23284-2006, United States
| | - Md Shafiul Islam
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, 60439, United States
| | - Marja Lalley
- Department of Chemistry, University of Chicago, Chicago, Illinois, 60637, United States
| | - Kishwar Khan
- Department of Chemistry, City University of Hong Kong, Hong Kong, 999077, China
| | - Muslum Demir
- Department of Chemical Engineering, Bogazici University, 34342, Istanbul, Turkey
- TUBITAK Marmara Research Center, Material Institute, Gebze, 41470, Turkey
| | - Hani Nasser Abdelhamid
- Advanced Multifunctional Materials Laboratory, Department of Chemistry, Assiut University, Assiut, 71516, Egypt
- Egyptian Russian University, Badr City, Cairo, 11829, Egypt
| | - Ahmed A Farghaly
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois, 60439, United States
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois, 60637, United States
- Chemistry Department, Faculty of Science, Assiut University, Assiut, 71516, Egypt
| |
Collapse
|
3
|
Ding C, Yu Y, Wang Y, Mu Y, Dong X, Meng C, Huang C, Zhang Y. Phosphate-modified cobalt silicate hydroxide with improved oxygen evolution reaction. J Colloid Interface Sci 2023; 648:251-258. [PMID: 37301149 DOI: 10.1016/j.jcis.2023.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/25/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Oxygen Evolution Reaction (OER) has gained significant attention due to its crucial role in renewable energy systems. The quest for efficient and low-cost OER catalysts remains a challenge of significant interest and importance. In this work, phosphate-incorporated cobalt silicate hydroxide (denoted as CoSi-P) is reported as a potential electrocatalyst for OER. The researchers first synthesized hollow spheres of cobalt silicate hydroxide Co3(Si2O5)2(OH)2 (denoted as CoSi) using SiO2 spheres as a template through a facile hydrothermal method. Phosphate (PO43-) was then introduced to layered CoSi, leading to the reconstruction of the hollow spheres into sheet-like architectures. As expected, the resulting CoSi-P electrocatalyst demonstrated low overpotential (309 mV at 10 mA·cm-2), large electrochemical active surface area (ECSA), and low Tafel slope. These parameters outperform CoSi hollow spheres and cobaltous phosphate (denoted as CoPO). Moreover, the catalytic performance achieved at 10 mA cm-2 is comparable or even better than that of most transition metal silicates/oxides/hydroxides. The findings indicate that the incorporation of phosphate into the structure of CoSi can enhance its OER performance. This study not only provides a non-noble metal catalyst CoSi-P but also demonstrates that the incorporation of phosphates into transition metal silicates (TMSs) offers a promising strategy for the design of robust, high-efficiency, and low-cost OER catalysts.
Collapse
Affiliation(s)
- Chongtao Ding
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yao Yu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Yu Wang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Yang Mu
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Xueying Dong
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Changgong Meng
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China; College of Environmental and Chemical Engineering, Dalian University, Dalian 116622, China
| | - Chi Huang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China.
| | - Yifu Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
4
|
Xu Y, Hu W, Li Y, Su H, Liang W, Liu B, Gong J, Liu Z, Liu X. Manipulating the Cobalt Species States to Break the Conversion–Selectivity Trade-Off Relationship for Stable Ethane Dehydrogenation over Ligand-Free-Synthesized Co@MFI Catalysts. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Yuebing Xu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122Wuxi, China
| | - Wenjin Hu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122Wuxi, China
| | - Yufeng Li
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122Wuxi, China
| | - Haixia Su
- Sinopec Catalyst Co., Ltd., 100029Beijing, China
| | - Weijun Liang
- Sinopec Catalyst Co., Ltd., 100029Beijing, China
| | - Bing Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122Wuxi, China
| | - Jianyi Gong
- Sinopec Catalyst Co., Ltd., 100029Beijing, China
| | - Zhijian Liu
- Sinopec Catalyst Co., Ltd., 100029Beijing, China
| | - Xiaohao Liu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, 214122Wuxi, China
| |
Collapse
|