1
|
Kao PF, Cheng CH, Cheng TH, Liu JC, Sung LC. Therapeutic Potential of Momordicine I from Momordica charantia: Cardiovascular Benefits and Mechanisms. Int J Mol Sci 2024; 25:10518. [PMID: 39408847 PMCID: PMC11477196 DOI: 10.3390/ijms251910518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 09/27/2024] [Accepted: 09/28/2024] [Indexed: 10/20/2024] Open
Abstract
Momordica charantia (bitter melon), a traditional medicinal plant, has been demonstrated to have potential in managing diabetes, gastrointestinal problems, and infections. Among its bioactive compounds, momordicine I, a cucurbitane-type triterpenoid, has attracted attention due to its substantial biological activities. Preclinical studies have indicated that momordicine I possesses antihypertensive, anti-inflammatory, antihypertrophic, antifibrotic, and antioxidative properties, indicating its potential as a therapeutic agent for cardiovascular diseases. Its mechanisms of action include modulating insulin signaling, inhibiting inflammatory pathways, and inducing apoptosis in cancer cells. The proposed mechanistic pathways through which momordicine I exerts its cardiovascular benefits are via the modulation of nitric oxide, angiotensin-converting enzymes, phosphoinositide 3-kinase (PI3K)/ protein kinase B (Akt), oxidative stress, apoptosis and inflammatory pathways. Furthermore, the anti-inflammatory effects of momordicine I are pivotal. Momordicine I might reduce inflammation through the following mechanisms: inhibiting pro-inflammatory cytokines, reducing adhesion molecules expression, suppressing NF-κB activation, modulating the Nrf2 pathway and suppressing c-Met/STAT3 pathway. However, its therapeutic use requires the careful consideration of potential side effects, contraindications, and drug interactions. Future research should focus on elucidating the precise mechanisms of momordicine I, validating its efficacy and safety through clinical trials, and exploring its pharmacokinetics. If proven effective, momordicine I could considerably affect clinical cardiology by acting as a novel adjunct or alternative therapy for cardiovascular diseases. To date, no review article has been published on the role of bitter-melon bioactive metabolites in cardiovascular prevention and therapy. The present work constitutes a comprehensive, up-to-date review of the literature, which highlights the promising therapeutic potential of momordicine I on the cardiovascular system and discusses future research recommendations.
Collapse
Affiliation(s)
- Pai-Feng Kao
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-F.K.); (J.-C.L.)
| | - Chun-Han Cheng
- Department of Medical Education, Linkou Chang Gung Memorial Hospital, Taoyuan City 33305, Taiwan;
| | - Tzu-Hurng Cheng
- Department of Biochemistry, School of Medicine, College of Medicine, China Medical University, Taichung City 404333, Taiwan;
| | - Ju-Chi Liu
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-F.K.); (J.-C.L.)
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11002, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11002, Taiwan
| | - Li-Chin Sung
- Division of Cardiology, Department of Internal Medicine, Shuang Ho Hospital, Ministry of Health and Welfare, Taipei Medical University, New Taipei City 23561, Taiwan; (P.-F.K.); (J.-C.L.)
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11002, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei 11002, Taiwan
| |
Collapse
|
2
|
Xiao X, Huang S, Yang Z, Zhu Y, Zhu L, Zhao Y, Bai J, Kim KH. Momordica charantia Bioactive Components: Hypoglycemic and Hypolipidemic Benefits Through Gut Health Modulation. J Med Food 2024; 27:589-600. [PMID: 38770678 DOI: 10.1089/jmf.2024.k.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024] Open
Abstract
Momordica charantia (MC), a member of the Cucurbitaceae family, is well known for its pharmacological activities that exhibit hypoglycemic and hypolipidemic properties. These properties are largely because of its abundant bioactive compounds and phytochemicals. Over the years, numerous studies have confirmed the regulatory effects of MC extract on glycolipid metabolism. However, there is a lack of comprehensive reviews on newly discovered MC-related components, such as insulin receptor-binding protein-19, adMc1, and MC protein-30 and triterpenoids 3β,7β,25-trihydroxycucurbita-5,23(E)-dien-19-al, and the role of MC in gut microbiota and bitter taste receptors. This review offers an up-to-date overview of the recently reported chemical compositions of MC, including polysaccharides, saponins, polyphenolics, peptides, and their beneficial effects. It also provides the latest updates on the role of MC in the regulation of gut microbiota and bitter taste receptor signaling pathways. As a result, this review will serve as a theoretical basis for potential applications in the creation or modification of MC-based nutrient supplements.
Collapse
Affiliation(s)
- Xiang Xiao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Shiting Huang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Zihan Yang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ying Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Lin Zhu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Yansheng Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Juan Bai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Kee-Hong Kim
- Department of Food Science, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
3
|
Liu J, Guo Y, Sun J, Lei Y, Guo M, Wang L. Extraction methods, multiple biological activities, and related mechanisms of Momordica charantia polysaccharide: A review. Int J Biol Macromol 2024; 263:130473. [PMID: 38423437 DOI: 10.1016/j.ijbiomac.2024.130473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 02/25/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Momordica Charantia Polysaccharide (MCP) is a key bioactive compound derived from bitter melon fruit. This review summarizes the advancements in MCP research, including extraction techniques, biological activities, and mechanisms. MCP can be extracted using various methods, and has demonstrated hypoglycemic, antioxidant, anti-inflammatory, and immunoregulatory effects. Research suggests that MCP may regulate metabolic enzymes, oxidative stress reactions, and inflammatory pathways. The review highlights the potential applications of MCP in areas such as anti-diabetes, antioxidant, anti-inflammatory, and immunoregulatory research. Future research should focus on elucidating the molecular mechanisms of MCP and optimizing extraction methods. This review provides a foundation for further research and utilization of MCP.
Collapse
Affiliation(s)
- Jinshen Liu
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China.
| | - Yuying Guo
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Jie Sun
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Yuxin Lei
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Mingyi Guo
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China
| | - Linhong Wang
- Department of Ophthalmology, 73 Jianshe South Road, Lubei District, Tangshan City, Hebei Province, China; Department of Ophthalmology, North China University of Science and Technology Affiliated Hospital, Tangshan 062000, China.
| |
Collapse
|
4
|
Protective Effect of Rhus chinensis Mill. Fruits on 3,5-Diethoxycarbonyl-1,4-Dihydrocollidine-Induced Cholestasis in Mice via Ameliorating Oxidative Stress and Inflammation. Nutrients 2022; 14:nu14194090. [PMID: 36235742 PMCID: PMC9573408 DOI: 10.3390/nu14194090] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/26/2022] [Accepted: 09/28/2022] [Indexed: 11/05/2022] Open
Abstract
This study focused on the preventive effects of the extracts of Rhus chinensis Mill. (RCM) fruits on cholestasis induced by 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) in mice. The results showed that RCM extracts could significantly ameliorate DDC-induced cholestasis via multiple mechanisms, including (1) alleviating liver damage via enhancing antioxidant capacity, such as increasing the contents of glutathione, superoxide dismutase, and catalase and inhibiting the levels of malondialdehyde; (2) preventing liver inflammation by suppressing NF-κB pathway and reducing proinflammatory cytokines secretion (e.g., tumor necrosis factor-α, interleukin-1β, and interleukin-6); (3) inhibiting liver fibrosis and collagen deposition by regulating the expression of transforming growth factor-β and α-smooth muscle actin; (4) modulating abnormal bile acid metabolism through increasing the expression of bile salt export pump and multidrug resistance-associated protein 2. This study was the first to elucidate the potential preventive effect of RCM extracts on DDC-induced cholestasis in mice from multiple pathways, which suggested that RCM fruits could be considered as a potential dietary supplement to prevent cholestasis.
Collapse
|
5
|
Liao PY, Lo HY, Liu IC, Lo LC, Hsiang CY, Ho TY. A gastro-resistant peptide from Momordica charantia improves diabetic nephropathy in db/ db mice via its novel reno-protective and anti-inflammatory activities. Food Funct 2022; 13:1822-1833. [PMID: 35083999 DOI: 10.1039/d1fo02788c] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetic nephropathy (DN), a principal diabetic microvascular complication, is a chronic inflammatory immune disorder. A gastro-resistant peptide mcIRBP-9 from Momordica charantia has shown modulation of blood glucose homeostasis in diabetic mice. Here we conducted a long-term experiment to evaluate the therapeutic effects and mechanisms of mcIRBP-9 on DN. Type 2 diabetic mice (db/db mice) were orally given mcIRBP-9 once daily for 12 consecutive weeks. The amelioration of DN was evaluated by renal function indexes, vascular leakage, and pathological lesions. Possible effective mechanisms of mcIRBP-9 on DN were analyzed by gene expression profiles. A pharmacokinetic study in rats was carried out to evaluate the oral bioavailability of mcIRBP-9. Our data showed that mcIRBP-9 was able to enter systemic circulation in rats after oral administration. In comparison with mock, long-term administration of mcIRBP-9 significantly decreased blood glucose (572.25 ± 1.55 mg dL-1vs. 213.50 ± 163.39 mg dL-1) and HbA1c levels (13.58 ± 0.30% vs. 8.23 ± 2.98%) and improved the survival rate (85.7% vs. 100%) in diabetic mice. mcIRBP-9 ameliorated DN by reducing renal vascular leakage and histopathological changes. mcIRBP-9 altered the pathways involved in inflammatory and immune responses, and the nuclear factor-κB played a central role in the regulation of mcIRBP-9-affected pathways. Moreover, mcIRBP-9 improved the inflammatory characteristic of DN in diabetic and non-diabetic mice. In conclusion, mcIRBP-9 displayed a novel anti-inflammatory activity and exhibited a reno-protective ability in addition to controlling the blood glucose and HbA1c levels. These findings suggested the role of mcIRBP-9 from M. charantia as a nutraceutical agent for diabetes and subsequent DN.
Collapse
Affiliation(s)
- Pei-Yung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404333, Taiwan. .,Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua 500209, Taiwan
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404333, Taiwan.
| | - I-Chen Liu
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404333, Taiwan.
| | - Lun-Chien Lo
- School of Chinese Medicine, China Medical University, Taichung 404333, Taiwan
| | - Chien-Yun Hsiang
- Department of Microbiology and Immunology, China Medical University, Taichung 404333, Taiwan.
| | - Tin-Yun Ho
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 404333, Taiwan. .,Department of Health and Nutrition Biotechnology, Asia University, Taichung 413305, Taiwan
| |
Collapse
|
6
|
Liao PY, Lo HY, Liu IC, Lo LC, Hsiang CY, Ho TY. The novel anti-inflammatory activity of mcIRBP from Momordica charantia is associated with the improvement of diabetic nephropathy. Food Funct 2022; 13:1268-1279. [DOI: 10.1039/d1fo03620c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Diabetic nephropathy is an inflammatory immune disorder accompanying diabetes.
Collapse
Affiliation(s)
- Pei-Yung Liao
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Changhua Christian Hospital, Changhua 50006, Taiwan
| | - Hsin-Yi Lo
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - I-Chen Liu
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Lun-Chien Lo
- School of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Chien-Yun Hsiang
- Department of Microbiology and Immunology, China Medical University, Taichung 40402, Taiwan
| | - Tin-Yun Ho
- Graduate Institute of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
- Department of Health and Nutrition Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
7
|
Tsai TH, Chang CI, Hung YL, Huang WC, Chang H, Kuo YH, Chyuan JH, Chuang LT, Tsai PJ. Anti-Inflammatory Effect of Charantadiol A, Isolated from Wild Bitter Melon Leaf, on Heat-Inactivated Porphyromonas gingivalis-Stimulated THP-1 Monocytes and a Periodontitis Mouse Model. Molecules 2021; 26:5651. [PMID: 34577123 PMCID: PMC8466092 DOI: 10.3390/molecules26185651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/09/2021] [Accepted: 09/11/2021] [Indexed: 11/17/2022] Open
Abstract
Porphyromonas gingivalis has been identified as one of the major periodontal pathogens. Activity-directed fractionation and purification processes were employed to identify bioactive compounds from bitter melon leaf. Ethanolic extract of bitter melon leaf was separated into five subfractions by open column chromatography. Subfraction-5-3 significantly inhibited P. gingivalis-induced interleukin (IL)-8 and IL-6 productions in human monocytic THP-1 cells and then was subjected to separation and purification by using different chromatographic methods. Consequently, 5β,19-epoxycucurbita-6,23(E),25(26)-triene-3β,19(R)-diol (charantadiol A) was identified and isolated from the subfraction-5-3. Charantadiol A effectively reduced P. gingivalis-induced IL-6 and IL-8 productions and triggered receptors expressed on myeloid cells (TREM)-1 mRNA level of THP-1 cells. In a separate study, charantadiol A significantly suppressed P. gingivalis-stimulated IL-6 and tumor necrosis factor-α mRNA levels in gingival tissues of mice, confirming the inhibitory effect against P. gingivalis-induced periodontal inflammation. Thus, charantadiol A is a potential anti-inflammatory agent for modulating P. gingivalis-induced inflammation.
Collapse
Affiliation(s)
- Tzung-Hsun Tsai
- Department of Dentistry, Keelung Chang-Gung Memorial Hospital, Keelung 204, Taiwan;
| | - Chi-I Chang
- Department of Biological Science and Technology, National Pingtung University of Science and Technology, Pingtung 912, Taiwan;
| | - Ya-Ling Hung
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan; (Y.-L.H.); (W.-C.H.)
| | - Wen-Cheng Huang
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan; (Y.-L.H.); (W.-C.H.)
| | - Hsiang Chang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
| | - Yueh-Hsiung Kuo
- Department of Chinese Pharmaceutical Sciences and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan;
- Chinese Medicine Research Center, China Medical University, Taichung 404, Taiwan
- Department of Biotechnology, Asia University, Taichung 413, Taiwan
| | - Jong-Ho Chyuan
- Hualien District Agricultural Research and Extension Station, Hualien 973, Taiwan;
| | - Lu-Te Chuang
- Department of Biotechnology and Pharmaceutical Technology, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
| | - Po-Jung Tsai
- Department of Human Development and Family Studies, National Taiwan Normal University, Taipei 106, Taiwan; (Y.-L.H.); (W.-C.H.)
- Program of Nutrition Science, School of Life Science, National Taiwan Normal University, Taipei 116, Taiwan
| |
Collapse
|